Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.NET

X  

LTC3407EDD-2 Datasheet(PDF) 10 Page - Linear Technology

Part # LTC3407EDD-2
Description  Dual Synchronous, 800mA, 2.25MHz Step-Down DC/DC Regulator
Download  16 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  LINER [Linear Technology]
Direct Link  http://www.linear.com
Logo LINER - Linear Technology

LTC3407EDD-2 Datasheet(HTML) 10 Page - Linear Technology

Back Button LTC3407EDD-2 Datasheet HTML 6Page - Linear Technology LTC3407EDD-2 Datasheet HTML 7Page - Linear Technology LTC3407EDD-2 Datasheet HTML 8Page - Linear Technology LTC3407EDD-2 Datasheet HTML 9Page - Linear Technology LTC3407EDD-2 Datasheet HTML 10Page - Linear Technology LTC3407EDD-2 Datasheet HTML 11Page - Linear Technology LTC3407EDD-2 Datasheet HTML 12Page - Linear Technology LTC3407EDD-2 Datasheet HTML 13Page - Linear Technology LTC3407EDD-2 Datasheet HTML 14Page - Linear Technology Next Button
Zoom Inzoom in Zoom Outzoom out
 10 / 16 page
background image
LTC3407-2
10
sn34072 34072fs
Hot Swap is registered trademark of Linear Technology Corporation.
VV
R
R
OUT =+
06
1
2
1
.
Keeping the current small (<5µA) in these resistors maxi-
mizes efficiency, but making them too small may allow
stray capacitance to cause noise problems and reduce the
phase margin of the error amp loop.
To improve the frequency response, a feed-forward ca-
pacitor CF may also be used. Great care should be taken to
route the VFB line away from noise sources, such as the
inductor or the SW line.
Power-On Reset
The POR pin is an open-drain output which pulls low when
either regulator is out of regulation. When both output
voltages are within ±8.5% of regulation, a timer is started
which releases POR after 218 clock cycles (about 117ms).
This delay can be significantly longer in Burst Mode
operation with low load currents, since the clock cycles
only occur during a burst and there could be milliseconds
of time between bursts. This can be bypassed by tying the
POR output to the MODE/SYNC input, to force pulse
skipping mode during a reset. In addition, if the output
voltage faults during Burst Mode sleep, POR could have a
slight delay for an undervoltage output condition and may
not respond to an overvoltage output. This can be avoided
by using pulse skipping mode instead. When either chan-
nel is shut down, the POR output is pulled low, since one
or both of the channels are not in regulation.
Mode Selection & Frequency Synchronization
The MODE/SYNC pin is a multipurpose pin which provides
mode selection and frequency synchronization. Connect-
ing this pin to VIN enables Burst Mode operation, which
provides the best low current efficiency at the cost of a
higher output voltage ripple. Connecting this pin to ground
selects pulse skipping mode, which provides the lowest
output ripple, at the cost of low current efficiency.
The LTC3407-2 can also be synchronized to an external
2.25MHz clock signal by the MODE/SYNC pin. During
synchronization, the mode is set to pulse skipping and the
top switch turn-on is synchronized to the rising edge of the
external clock.
Checking Transient Response
The regulator loop response can be checked by looking at
the load transient response. Switching regulators take
several cycles to respond to a step in load current. When
a load step occurs, VOUT immediately shifts by an amount
equal to ∆ILOAD • ESR, where ESR is the effective series
resistance of COUT. ∆ILOAD also begins to charge or
discharge COUT, generating a feedback error signal used
by the regulator to return VOUT to its steady-state value.
During this recovery time, VOUT can be monitored for
overshoot or ringing that would indicate a stability
problem.
The initial output voltage step may not be within the
bandwidth of the feedback loop, so the standard second-
order overshoot/DC ratio cannot be used to determine
phase margin. In addition, a feed-forward capacitor, CF,
can be added to improve the high frequency response, as
shown in Figure 2. Capacitor CF provides phase lead by
creating a high frequency zero with R2, which improves
the phase margin.
The output voltage settling behavior is related to the
stability of the closed-loop system and will demonstrate
the actual overall supply performance. For a detailed
explanation of optimizing the compensation components,
including a review of control loop theory, refer to Applica-
tion Note 76.
In some applications, a more severe transient can be
caused by switching in loads with large (>1µF) input
capacitors. The discharged input capacitors are effectively
put in parallel with COUT, causing a rapid drop in VOUT. No
regulator can deliver enough current to prevent this prob-
lem, if the switch connecting the load has low resistance
and is driven quickly. The solution is to limit the turn-on
speed of the load switch driver. A Hot Swap
TM controller is
designed specifically for this purpose and usually incorpo-
rates current limiting, short-circuit protection, and soft-
starting.
Efficiency Considerations
The percent efficiency of a switching regulator is equal to
the output power divided by the input power times 100%.
It is often useful to analyze individual losses to determine
what is limiting the efficiency and which change would
APPLICATIO S I FOR ATIO


Similar Part No. - LTC3407EDD-2

ManufacturerPart #DatasheetDescription
logo
Linear Technology
LTC3407EDD-3 LINER-LTC3407EDD-3 Datasheet
248Kb / 16P
   Dual Synchronous, 1.8V/0.8A and 3.3V/0.8A 2.25MHz Step-Down DC/DC Regulator
LTC3407EDD-4 LINER-LTC3407EDD-4 Datasheet
244Kb / 16P
   Dual Synchronous, 800mA, 2.25MHz Step-Down DC/DC Regulator
More results

Similar Description - LTC3407EDD-2

ManufacturerPart #DatasheetDescription
logo
Linear Technology
LTC3407-2 LINER-LTC3407-2_15 Datasheet
264Kb / 16P
   Dual Synchronous, 800mA, 2.25MHz Step-Down DC/DC Regulator
LTC3407A-2 LINER-LTC3407A-2_15 Datasheet
280Kb / 16P
   Dual Synchronous 800mA, 2.25MHz Step-Down DC/DC Regulator
LTC3407A-2 LINER-LTC3407A-2 Datasheet
270Kb / 16P
   Dual Synchronous 800mA,2.25MHz Step-Down DC/DC Regulator
LTC3407-4 LINER-LTC3407-4_15 Datasheet
273Kb / 14P
   Dual Synchronous, 800mA, 2.25MHz Step-Down DC/DC Regulator
LTC3407-4 LINER-LTC3407-4 Datasheet
244Kb / 16P
   Dual Synchronous, 800mA, 2.25MHz Step-Down DC/DC Regulator
LTC3548A LINER-LTC3548A_15 Datasheet
254Kb / 20P
   Dual Synchronous 400mA/800mA, 2.25MHz Step-Down DC/DC Regulator
LTC3548 LINER-LTC3548 Datasheet
275Kb / 16P
   Dual Synchronous, 400mA/800mA, 2.25MHz Step-Down DC/DC Regulator
LTC3548A LINER-LTC3548A Datasheet
250Kb / 20P
   Dual Synchronous 400mA/800mA, 2.25MHz Step-Down DC/DC Regulator
LTC3548 LINER-LTC3548_15 Datasheet
254Kb / 16P
   Dual Synchronous, 400mA/800mA, 2.25MHz Step-Down DC/DC Regulator
logo
Micrel Semiconductor
MIC2230 MICREL-MIC2230_10 Datasheet
1Mb / 18P
   Dual Synchronous 800mA/800mA Step-Down DC/DC Regulator
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.NET
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com