Electronic Components Datasheet Search
Selected language     English  ▼


CS61318-IP Datasheet(PDF) 11 Page - Cirrus Logic

Part No. CS61318-IP
Description  E1 LINE INTERFACE UNIT
Download  28 Pages
Scroll/Zoom Zoom In 100% Zoom Out
Maker  CIRRUS [Cirrus Logic]
Homepage  http://www.cirrus.com
Logo 

 11 page
background image
CS61318
DS441PP2
11
TRING, unless TAOS has been selected, in which
case AMI-encoded continuous ones are transmitted
at the TCLK frequency. The receiver RTIP and
RRING inputs are ignored when local loopback is
in effect.
2.8
Remote Loopback
Remote loopback is selected by setting RLOOP,
pin 26, high (CR1.5 = 1 in host mode). In remote
loopback, the recovered clock and data input on
RTIP and RRING are sent back out on the line via
TTIP and TRING. Selecting remote loopback over-
rides a TAOS request. The recovered clock and data
from the incoming signal are also sent to RCLK,
RPOS and RNEG (RDATA). Note: simultaneous se-
lection of local and remote loopback modes will cause
a device reset to occur (see Reset).
2.9
Network Loopback
Network Loopback (automatic remote loopback)
can be commanded from the network when the
Network Loopback detect function is enabled. In
Host Mode, Network Loopback (NLOOP) detec-
tion is enabled by writing ones to TAOS, LLOOP,
and RLOOP, then clearing these three bits on a suc-
cessive write cycle. In hardware mode, Network
Loopback can be enabled by tying RLOOP to
RCLK or by setting TAOS, LLOOP, and RLOOP
high for at least 200 ns, and then low. Once enabled
Network Loopback functionality will remain in ef-
fect until RLOOP is activated or the device is reset.
When NLOOP detection is enabled, the receiver
monitors the input data stream for the NLOOP data
patterns (00001 = enable, 001 = disable). When an
NLOOP enable data pattern is repeated for a mini-
mum of five seconds (with less than 10E-3 BER),
the device initiates a remote loopback. Once Net-
work Loopback detection is enabled and activated
by the NLOOP data pattern, the loopback is identi-
cal to Remote Loopback initiated at the device.
NLOOP is reset if the disable pattern (001) is re-
ceived for 5 seconds, or by activation of RLOOP.
NLOOP is temporarily suspended by LLOOP, but
the NLOOP state is not reset.
2.10
Alarm Indication Signal
The receiver sets the register bit, AIS, to “1” when
less than 9 zeros are detected out of 8192 bit peri-
ods. AIS returns to “0” upon the first read after the
AIS condition is removed, determined by 9 or more
zeros out of 8192 bit periods.
2.11
Serial Interface
In the Host Mode, pins 24 through 28 serve as a mi-
crocontroller interface. On-chip registers can be
written to via the SDI pin or read from via the SDO
pin at the clock rate determined by SCLK. Through
these registers, a host controller can be used to con-
trol operational characteristics and monitor device
status. The serial port read/write timing is indepen-
dent of the system transmit and receive timing.
Data transfers are initiated by taking the chip select
input, CS, low (CS must initially be high). Address
and input data bits are clocked in on the rising edge
of SCLK. The clock edge on which output data is
stable and valid is determined by CLKE as shown
in Table 1. Data transfers are terminated by setting
CS high. CS may go high no sooner than 50 ns after
the rising edge of the SCLK cycle corresponding to
the last write bit. For a serial data read, CS may go
high any time to terminate the output and set SDO
to high impedance.
Figure 9 shows the timing relationships for data
transfers when CLKE = 0. When CLKE = 1, data
bit D7 is held until the falling edge of the 16th clock
cycle. When CLKE = 0, data bit D7 is held valid
until the rising edge of the 17th clock cycle. SDO
goes high-impedance after CS goes high or at the
end of the hold period of data bit D7.
SDO goes to a high impedance state when not in
use. SDO and SDI may be tied together in applica-
tions where the host processor has a bi-directional
I/O port.




Html Pages

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28 


Datasheet Download



Related Electronics Part Number

Part NumberComponents DescriptionHtml ViewManufacturer
CS61884Octal T1/E1/J1 Line Interface Unit 1 2 3 4 5 MoreCirrus Logic
IDT82V2081SINGLE CHANNEL T1/E1/J1 LONG HAUL/ SHORT HAUL LINE INTERFACE UNIT 1 2 3 4 5 MoreIntegrated Device Technology
IDT82V2082DUAL CHANNEL T1/E1/J1 LONG HAUL/ SHORT HAUL LINE INTERFACE UNIT 1 2 3 4 5 MoreIntegrated Device Technology
XRT73L06SIX CHANNEL E3/DS3/STS-1 LINE INTERFACE UNIT 1 2 3 4 5 MoreExar Corporation
XRT75VL00E3/DS3/STS-1 LINE INTERFACE UNIT WITH JITTER ATTENUATOR 1 2 3 4 5 MoreExar Corporation
IDT82V2088OCTAL CHANNEL T1/E1/J1 LONG HAUL/ SHORT HAUL LINE INTERFACE UNIT 1 2 3 4 5 MoreIntegrated Device Technology
XRT75L00E3/DS3/STS-1 LINE INTERFACE UNIT WITH JITTER ATTENUATOR 1 2 3 4 5 MoreExar Corporation
XRT75L00DE3/DS3/STS-1 LINE INTERFACE UNIT WITH SONET DESYNCHRONIZER 1 2 3 4 5 MoreExar Corporation
CS61880OCTAL E1 LINE INTERFACE UNIT 1 2 3 4 5 MoreCirrus Logic
DS263033.3V E1/T1/J1 Short-Haul Octal Line Interface Unit 1 2 3 4 5 MoreMaxim Integrated Products

Link URL

Does ALLDATASHEET help your business so far?  [ DONATE ]  

About Alldatasheet   |   Advertisement   |   Contact us   |   Privacy Policy   |   Bookmark   |   Link Exchange   |   Manufacturer List
All Rights Reserved© Alldatasheet.com 2003 - 2017    


Mirror Sites
English : Alldatasheet.com  , Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp  |   Russian : Alldatasheetru.com
Korean : Alldatasheet.co.kr   |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com  |   Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl