Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.NET

X  

9601-00 Datasheet(PDF) 9 Page - Peregrine Semiconductor Corp.

Part # 9601-00
Description  2200 MHz UltraCMOS??Integer-N PLL for Rad Hard Applications
Download  14 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  PEREGRINE [Peregrine Semiconductor Corp.]
Direct Link  http://www.peregrine-semi.com
Logo PEREGRINE - Peregrine Semiconductor Corp.

9601-00 Datasheet(HTML) 9 Page - Peregrine Semiconductor Corp.

Back Button 9601-00 Datasheet HTML 5Page - Peregrine Semiconductor Corp. 9601-00 Datasheet HTML 6Page - Peregrine Semiconductor Corp. 9601-00 Datasheet HTML 7Page - Peregrine Semiconductor Corp. 9601-00 Datasheet HTML 8Page - Peregrine Semiconductor Corp. 9601-00 Datasheet HTML 9Page - Peregrine Semiconductor Corp. 9601-00 Datasheet HTML 10Page - Peregrine Semiconductor Corp. 9601-00 Datasheet HTML 11Page - Peregrine Semiconductor Corp. 9601-00 Datasheet HTML 12Page - Peregrine Semiconductor Corp. 9601-00 Datasheet HTML 13Page - Peregrine Semiconductor Corp. Next Button
Zoom Inzoom in Zoom Outzoom out
 9 / 14 page
background image
Product Specification
PE9601
Page 9 of 14
Document No. 70-0025-05
│ www.psemi.com
©2005 Peregrine Semiconductor Corp. All rights reserved.
Main Counter Chain
The main counter chain divides the RF input
frequency, Fin, by an integer derived from the user
defined values in the “M” and “A” counters. It is
composed of the 10/11 dual modulus prescaler,
modulus select logic, and 9 bit M counter. Setting
Pre_en “low” enables the 10/11 prescaler. Setting
Pre_en “high” allows Fin to bypass the prescaler and
powers down the prescaler.
The output from the main counter chain, fp, is related
to the VCO frequency, Fin, by the following equation:
fp = Fin / [10 x (M + 1) + A]
(1)
where A
M + 1, M ¹ 0
When the loop is locked, Fin is related to the
reference frequency, fr, by the following equation:
Fin = [10 x (M + 1) + A] x (fr / (R+1))
(2)
where A
M + 1, M ¹ 0
A consequence of the upper limit on A is that Fin
must be greater than or equal to 90 x (fr / (R+1)) to
obtain contiguous channels. Programming the M
Counter with the minimum value of “1” will result in a
minimum M Counter divide ratio of “2”.
In Direct Interface Mode, main counter inputs M7 and
M8 are internally forced low.
Reference Counter
The reference counter chain divides the reference
frequency, fr, down to the phase detector
comparison frequency, fc.
The output frequency of the 6 bit R Counter is
related to the reference frequency by the following
equation:
fc = fr / (R + 1)
(3)
where R > 0
Note that programming R equal to “0” will pass the
reference frequency, fr, directly to the phase
detector.
In Direct Interface Mode, R Counter inputs R4 and R5
are internally forced low (“0”).
Register Programming
Parallel Interface Mode
Parallel Interface Mode is selected by setting the
Bmode input “low” and the Smode input “low”.
Parallel input data, D[7:0], are latched in a parallel
fashion into one of three, 8-bit primary register
sections on the rising edge of M1_WR, M2_WR, or
A_WR per the mapping shown in Table 7 on page
10. The contents of the primary register are
transferred into a secondary register on the rising
edge of Hop_WR according to the timing diagram
shown in Figure 6. Data are transferred to the
counters as shown in Table 7 on page 10.
The secondary register acts as a buffer to allow
rapid changes to the VCO frequency. This double
buffering for “ping-pong” counter control is
programmed via the FSELP input. When FSELP is
“high”, the primary register contents set the counter
inputs. When FSELP is “low”, the secondary register
contents are utilized.
The FSELP input is synchronized with the loading of
the counters in order to minimize glitches in the
“ping-pong” case. Due to this attribute, applications
using a single register should use the secondary
register (i.e. tie FSELP “low”) to avoid problems with
the prescaler powering up in the disabled state.
Parallel input data, D[7:0], are latched into the
enhancement register on the rising edge of E_WR
according to the timing diagram shown in Figure 6.
This data provides control bits as shown in Table 8
on page 10 with bit functionality enabled by
asserting the Enh input “low”.
Direct Interface Mode
Direct Interface Mode is selected by setting the
Bmode input “high”.
Counter control bits are set directly at the pins as
shown in Table 7. In Direct Interface Mode, main
counter inputs M7 and M8, and R Counter inputs R4
and R5 are internally forced low (“0”)
Serial Interface Mode
Serial Interface Mode is selected by setting the
Bmode input “low” and the Smode input “high”.
While the E_WR input is “low” and the S_WR input
is “low”, serial input data (Sdata input), B0 to B19, are
clocked serially into the primary register on the rising
edge of Sclk, MSB (B0) first. The contents from the
primary register are transferred into the secondary
register on the rising edge of either S_WR or
Hop_WR according to the timing diagram shown in
Figure 6 and Figure 7. Data are transferred to the
counters as shown in Table 7 on page 10.


Similar Part No. - 9601-00

ManufacturerPart #DatasheetDescription
logo
ETRI
9601-36 ETRI-9601-36 Datasheet
82Kb / 1P
   PLUGS AND CABLES
9601-36/36 ETRI-9601-36/36 Datasheet
82Kb / 1P
   PLUGS AND CABLES
9601-36/3M ETRI-9601-36/3M Datasheet
82Kb / 1P
   PLUGS AND CABLES
9601-36/60 ETRI-9601-36/60 Datasheet
82Kb / 1P
   PLUGS AND CABLES
9601-36/90 ETRI-9601-36/90 Datasheet
82Kb / 1P
   PLUGS AND CABLES
More results

Similar Description - 9601-00

ManufacturerPart #DatasheetDescription
logo
Peregrine Semiconductor
PE9601 PSEMI-PE9601 Datasheet
490Kb / 14P
   2200 MHz UltraCMOS Integer-N PLL for Rad Hard Applications
logo
Peregrine Semiconductor...
PE9704 PEREGRINE-PE9704_06 Datasheet
246Kb / 10P
   3000 MHz UltraCMOS??Integer-N PLL Rad Hard for Space Applications
logo
Peregrine Semiconductor
PE9704 PSEMI-PE9704 Datasheet
248Kb / 10P
   3000 MHz UltraCMOS Integer-N PLL Rad Hard for Space Applications
logo
Peregrine Semiconductor...
PE9702 PEREGRINE-PE9702_06 Datasheet
260Kb / 13P
   3000 MHz UltraCMOS??Integer-N PLL Rad Hard for Space Applications
logo
Peregrine Semiconductor
PE9702 PSEMI-PE9702 Datasheet
263Kb / 13P
   3000 MHz UltraCMOS Integer-N PLL Rad Hard for Space Applications
logo
Peregrine Semiconductor...
PE9701 PEREGRINE-PE9701 Datasheet
280Kb / 13P
   3000 MHz UltraCMOS??Integer-N PLL Rad Hard for Space Applications
PE97022 PEREGRINE-PE97022 Datasheet
355Kb / 14P
   3500 MHz UltraCMOS Integer-N PLL Rad Hard for Space Applications
logo
Peregrine Semiconductor
PE9701 PSEMI-PE9701 Datasheet
287Kb / 13P
   3000 MHz UltraCMOS Integer-N PLL Rad Hard for Space Applications
PE97042 PSEMI-PE97042 Datasheet
461Kb / 11P
   3.5 GHz UltraCMOS Integer-N PLL Rad Hard for Space Applications
PE97022 PSEMI-PE97022 Datasheet
561Kb / 14P
   3.5 GHz UltraCMOS Integer-N PLL Rad Hard for Space Applications
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.NET
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com