Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.NET

X  

ISL6609AIRZ Datasheet(PDF) 8 Page - Intersil Corporation

Part # ISL6609AIRZ
Description  Synchronous Rectified MOSFET Driver
Download  11 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  INTERSIL [Intersil Corporation]
Direct Link  http://www.intersil.com/cda/home
Logo INTERSIL - Intersil Corporation

ISL6609AIRZ Datasheet(HTML) 8 Page - Intersil Corporation

Back Button ISL6609AIRZ Datasheet HTML 3Page - Intersil Corporation ISL6609AIRZ Datasheet HTML 4Page - Intersil Corporation ISL6609AIRZ Datasheet HTML 5Page - Intersil Corporation ISL6609AIRZ Datasheet HTML 6Page - Intersil Corporation ISL6609AIRZ Datasheet HTML 7Page - Intersil Corporation ISL6609AIRZ Datasheet HTML 8Page - Intersil Corporation ISL6609AIRZ Datasheet HTML 9Page - Intersil Corporation ISL6609AIRZ Datasheet HTML 10Page - Intersil Corporation ISL6609AIRZ Datasheet HTML 11Page - Intersil Corporation  
Zoom Inzoom in Zoom Outzoom out
 8 / 11 page
background image
8
FN9221.1
March 6, 2006
Application Information
MOSFET and Driver Selection
The parasitic inductances of the PCB and of the power
devices’ packaging (both upper and lower MOSFETs) can
cause serious ringing, exceeding absolute maximum rating
of the devices. The negative ringing at the edges of the
PHASE node could increase the bootstrap capacitor voltage
through the internal bootstrap diode, and in some cases, it
may overstress the upper MOSFET driver. Careful layout,
proper selection of MOSFETs and packaging, as well as the
proper driver can go a long way toward minimizing such
unwanted stress.
The selection of D2-PAK, or D-PAK packaged MOSFETs, is
a much better match (for the reasons discussed) for the
ISL6609A. Low-profile MOSFETs, such as Direct FETs and
multi-SOURCE leads devices (SO-8, LFPAK, PowerPAK),
have low parasitic lead inductances and can be driven by
either ISL6609 or ISL6609A (assuming proper layout
design). The ISL6609, missing the 3
Ω integrated BOOT
resistor, typically yields slightly higher efficiency than the
ISL6609A.
Layout Considerations
A good layout helps reduce the ringing on the switching
node (PHASE) and significantly lower the stress applied to
the output drives. The following advice is meant to lead to an
optimized layout:
• Keep decoupling loops (VCC-GND and BOOT-PHASE) as
short as possible.
• Minimize trace inductance, especially on low-impedance
lines. All power traces (UGATE, PHASE, LGATE, GND,
VCC) should be short and wide, as much as possible.
• Minimize the inductance of the PHASE node. Ideally, the
source of the upper and the drain of the lower MOSFET
should be as close as thermally allowable.
• Minimize the current loop of the output and input power
trains. Short the source connection of the lower MOSFET
to ground as close to the transistor pin as feasible. Input
capacitors (especially ceramic decoupling) should be
placed as close to the drain of upper and source of lower
MOSFETs as possible.
In addition, connecting the thermal pad of the QFN package
to the power ground through a via, or placing a low noise
copper plane underneath the SOIC part is recommended for
high switching frequency, high current applications. This is to
improve heat dissipation and allow the part to achieve its
full thermal potential.
Upper MOSFET Self Turn-On Effects at Startup
Should the driver have insufficient bias voltage applied, its
outputs are floating. If the input bus is energized at a high
dV/dt rate while the driver outputs are floating, because of
self-coupling via the internal CGD of the MOSFET, the
UGATE could momentarily rise up to a level greater than the
threshold voltage of the MOSFET. This could potentially turn
on the upper switch and result in damaging inrush energy.
Therefore, if such a situation (when input bus powered up
before the bias of the controller and driver is ready) could
conceivably be encountered, it is a common practice to
place a resistor (RUGPH) across the gate and source of the
upper MOSFET to suppress the Miller coupling effect. The
value of the resistor depends mainly on the input voltage’s
rate of rise, the CGD/CGS ratio, as well as the gate-source
threshold of the upper MOSFET. A higher dV/dt, a lower
CDS/CGS ratio, and a lower gate-source threshold upper
FET will require a smaller resistor to diminish the effect of
the internal capacitive coupling. For most applications, a
5k to 10k
Ω resistor is typically sufficient, not affecting normal
performance and efficiency.
The coupling effect can be roughly estimated with the
following equations, which assume a fixed linear input ramp
and neglect the clamping effect of the body diode of the
upper drive and the bootstrap capacitor. Other parasitic
components such as lead inductances and PCB
capacitances are also not taken into account. These
equations are provided for guidance purpose only.
FIGURE 3. TYPICAL UPPER-GATE DRIVE TURN-ON PATH
FIGURE 4. TYPICAL LOWER-GATE DRIVE TURN-ON PATH
Q1
D
S
G
RGI1
RG1
BOOT
RHI1
CDS
CGS
CGD
RLO1
PHASE
VCC
UGATE
VCC
Q2
D
S
G
RGI2
RG2
RHI2
CDS
CGS
CGD
RLO2
GND
LGATE
ISL6609, ISL6609A


Similar Part No. - ISL6609AIRZ

ManufacturerPart #DatasheetDescription
logo
Intersil Corporation
ISL6609AIRZ INTERSIL-ISL6609AIRZ Datasheet
1Mb / 12P
   Synchronous Rectified MOSFET Driver
ISL6609AIRZ INTERSIL-ISL6609AIRZ Datasheet
1Mb / 12P
   Synchronous Rectified MOSFET Driver
April 27, 2009
logo
Renesas Technology Corp
ISL6609AIRZ RENESAS-ISL6609AIRZ Datasheet
1Mb / 12P
   Synchronous Rectified MOSFET Driver
logo
Intersil Corporation
ISL6609AIRZ-T INTERSIL-ISL6609AIRZ-T Datasheet
1Mb / 12P
   Synchronous Rectified MOSFET Driver
ISL6609AIRZ-T INTERSIL-ISL6609AIRZ-T Datasheet
1Mb / 12P
   Synchronous Rectified MOSFET Driver
April 27, 2009
More results

Similar Description - ISL6609AIRZ

ManufacturerPart #DatasheetDescription
logo
Intersil Corporation
ISL6609CBZ INTERSIL-ISL6609CBZ Datasheet
1Mb / 12P
   Synchronous Rectified MOSFET Driver
April 27, 2009
ISL6605CB INTERSIL-ISL6605CB Datasheet
266Kb / 9P
   Synchronous Rectified MOSFET Driver
May 9, 2006
ISL6605 INTERSIL-ISL6605_06 Datasheet
272Kb / 9P
   Synchronous Rectified MOSFET Driver
ISL6605 INTERSIL-ISL6605 Datasheet
302Kb / 9P
   Synchronous Rectified MOSFET Driver
ISL6596 INTERSIL-ISL6596 Datasheet
222Kb / 11P
   Synchronous Rectified MOSFET Driver
ISL6596CBZ INTERSIL-ISL6596CBZ Datasheet
219Kb / 11P
   Synchronous Rectified MOSFET Driver
January 22, 2010
logo
Renesas Technology Corp
ISL6596 RENESAS-ISL6596 Datasheet
689Kb / 13P
   Synchronous Rectified MOSFET Driver
logo
Intersil Corporation
ISL6608 INTERSIL-ISL6608 Datasheet
332Kb / 11P
   Synchronous Rectified MOSFET Driver
ISL6609 INTERSIL-ISL6609 Datasheet
1Mb / 12P
   Synchronous Rectified MOSFET Driver
logo
Renesas Technology Corp
ISL6605 RENESAS-ISL6605 Datasheet
562Kb / 10P
   Synchronous Rectified MOSFET Driver
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.NET
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com