Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.NET

X  

CY7C1472V25-250AXI Datasheet(PDF) 7 Page - Cypress Semiconductor

Part # CY7C1472V25-250AXI
Description  72-Mbit(2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL Architecture
Download  28 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  CYPRESS [Cypress Semiconductor]
Direct Link  http://www.cypress.com
Logo CYPRESS - Cypress Semiconductor

CY7C1472V25-250AXI Datasheet(HTML) 7 Page - Cypress Semiconductor

Back Button CY7C1472V25-250AXI Datasheet HTML 3Page - Cypress Semiconductor CY7C1472V25-250AXI Datasheet HTML 4Page - Cypress Semiconductor CY7C1472V25-250AXI Datasheet HTML 5Page - Cypress Semiconductor CY7C1472V25-250AXI Datasheet HTML 6Page - Cypress Semiconductor CY7C1472V25-250AXI Datasheet HTML 7Page - Cypress Semiconductor CY7C1472V25-250AXI Datasheet HTML 8Page - Cypress Semiconductor CY7C1472V25-250AXI Datasheet HTML 9Page - Cypress Semiconductor CY7C1472V25-250AXI Datasheet HTML 10Page - Cypress Semiconductor CY7C1472V25-250AXI Datasheet HTML 11Page - Cypress Semiconductor Next Button
Zoom Inzoom in Zoom Outzoom out
 7 / 28 page
background image
CY7C1470V25
CY7C1472V25
CY7C1474V25
Document #: 38-05290 Rev. *I
Page 7 of 28
Functional Overview
The
CY7C1470V25/CY7C1472V25/CY7C1474V25
are
synchronous-pipelined Burst NoBL SRAMs designed specifi-
cally to eliminate wait states during Write/Read transitions. All
synchronous inputs pass through input registers controlled by
the rising edge of the clock. The clock signal is qualified with
the Clock Enable input signal (CEN). If CEN is HIGH, the clock
signal is not recognized and all internal states are maintained.
All synchronous operations are qualified with CEN. All data
outputs pass through output registers controlled by the rising
edge of the clock. Maximum access delay from the clock rise
(tCO) is 3.0 ns (250-MHz device).
Accesses can be initiated by asserting all three Chip Enables
(CE1, CE2, CE3) active at the rising edge of the clock. If Clock
Enable (CEN) is active LOW and ADV/LD is asserted LOW,
the address presented to the device will be latched. The
access can either be a Read or Write operation, depending on
the status of the Write Enable (WE). BW[x] can be used to
conduct Byte Write operations.
Write operations are qualified by the Write Enable (WE). All
writes are simplified with on-chip synchronous self-timed write
circuitry.
Three synchronous Chip Enables (CE1, CE2, CE3) and an
asynchronous Output Enable (OE) simplify depth expansion.
All operations (Reads, Writes, and Deselects) are pipelined.
ADV/LD should be driven LOW once the device has been
deselected in order to load a new address for the next
operation.
Single Read Accesses
A Read access is initiated when the following conditions are
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,
and CE3 are ALL asserted active, (3) the Write Enable input
signal WE is deasserted HIGH, and (4) ADV/LD is asserted
LOW. The address presented to the address inputs is latched
into the Address Register and presented to the memory core
and control logic. The control logic determines that a Read
access is in progress and allows the requested data to
propagate to the input of the output register. At the rising edge
of the next clock the requested data is allowed to propagate
through the output register and onto the data bus within 2.6 ns
(250-MHz device) provided OE is active LOW. After the first
clock of the Read access the output buffers are controlled by
OE and the internal control logic. OE must be driven LOW in
order for the device to drive out the requested data. During the
second clock, a subsequent operation (Read/Write/Deselect)
can be initiated. Deselecting the device is also pipelined.
Therefore, when the SRAM is deselected at clock rise by one
of the chip enable signals, its output will tri-state following the
next clock rise.
Burst Read Accesses
The CY7C1470V25/CY7C1472V25/CY7C1474V25 have an
on-chip burst counter that allows the user the ability to supply
a single address and conduct up to four Reads without
reasserting the address inputs. ADV/LD must be driven LOW
in order to load a new address into the SRAM, as described in
the Single Read Access section above. The sequence of the
burst counter is determined by the MODE input signal. A LOW
input on MODE selects a linear burst mode, a HIGH selects an
interleaved burst sequence. Both burst counters use A0 and
A1 in the burst sequence, and will wrap-around when incre-
mented sufficiently. A HIGH input on ADV/LD will increment
the internal burst counter regardless of the state of chip
enables inputs or WE. WE is latched at the beginning of a burst
cycle. Therefore, the type of access (Read or Write) is
maintained throughout the burst sequence.
Single Write Accesses
Write accesses are initiated when the following conditions are
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,
and CE3 are ALL asserted active, and (3) the Write signal WE
is asserted LOW. The address presented to the address inputs
is loaded into the Address Register. The Write signals are
latched into the Control Logic block.
On the subsequent clock rise the data lines are automatically
tri-stated regardless of the state of the OE input signal. This
allows the external logic to present the data on DQ and DQP
(DQa,b,c,d,e,f,g,h/DQPa,b,c,d,e,f,g,h
for
CY7C1474V25,
DQa,b,c,d/DQPa,b,c,d for CY7C1470V25 and DQa,b/DQPa,b for
CY7C1472V25). In addition, the address for the subsequent
access (Read/Write/Deselect) is latched into the Address
Register (provided the appropriate control signals are
asserted).
On the next clock rise the data presented to DQ and DQP
(DQa,b,c,d,e,f,g,h/DQPa,b,c,d,e,f,g,h
for
CY7C1474V25,
DQa,b,c,d/DQPa,b,c,d for CY7C1470V25 & DQa,b/DQPa,b for
CY7C1472V25) (or a subset for Byte Write operations, see
Write Cycle Description table for details) inputs is latched into
the device and the Write is complete.
The data written during the Write operation is controlled by BW
(BWa,b,c,d,e,f,g,h
for
CY7C1474V25,
BWa,b,c,d
for
CY7C1470V25 and BWa,b for CY7C1472V25) signals. The
CY7C1470V25/CY7C1472V25/CY7C1474V25 provides Byte
Write capability that is described in the Write Cycle Description
table. Asserting the Write Enable input (WE) with the selected
Byte Write Select (BW) input will selectively write to only the
desired bytes. Bytes not selected during a Byte Write
operation will remain unaltered. A synchronous self-timed
write mechanism has been provided to simplify the Write
operations. Byte Write capability has been included in order to
greatly simplify Read/Modify/Write sequences, which can be
reduced to simple Byte Write operations.
Because the CY7C1470V25/CY7C1472V25/CY7C1474V25
are common I/O devices, data should not be driven into the
device while the outputs are active. The Output Enable (OE)
can be deasserted HIGH before presenting data to the DQ and
DQP (DQa,b,c,d,e,f,g,h/DQPa,b,c,d,e,f,g,h for CY7C1474V25,
DQa,b,c,d/DQPa,b,c,d for CY7C1470V25 and DQa,b/DQPa,b for
CY7C1472V25) inputs. Doing so will tri-state the output
drivers.
As
a
safety
precaution,
DQ
and
DQP
(DQa,b,c,d,e,f,g,h/DQPa,b,c,d,e,f,g,h
for
CY7C1474V25,
DQa,b,c,d/DQPa,b,c,d for CY7C1470V25 and DQa,b/DQPa,b for
CY7C1472V25) are automatically tri-stated during the data
portion of a Write cycle, regardless of the state of OE.
Burst Write Accesses
The CY7C1470V25/CY7C1472V25/CY7C1474V25 has an
on-chip burst counter that allows the user the ability to supply
a single address and conduct up to four Write operations
without reasserting the address inputs. ADV/LD must be
driven LOW in order to load the initial address, as described
in the Single Write Access section above. When ADV/LD is
driven HIGH on the subsequent clock rise, the Chip Enables
(CE1, CE2, and CE3) and WE inputs are ignored and the burst
counter is incremented. The correct BW (BWa,b,c,d,e,f,g,h for
[+] Feedback
[+] Feedback


Similar Part No. - CY7C1472V25-250AXI

ManufacturerPart #DatasheetDescription
logo
Cypress Semiconductor
CY7C1472V25-250AXC CYPRESS-CY7C1472V25-250AXC Datasheet
382Kb / 27P
   72-Mbit(2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL??Architecture
More results

Similar Description - CY7C1472V25-250AXI

ManufacturerPart #DatasheetDescription
logo
Cypress Semiconductor
CY7C1474V25 CYPRESS-CY7C1474V25 Datasheet
382Kb / 27P
   72-Mbit(2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL??Architecture
CY7C1470V33 CYPRESS-CY7C1470V33_06 Datasheet
520Kb / 29P
   72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL??Architecture
CY7C1470BV25 CYPRESS-CY7C1470BV25 Datasheet
868Kb / 29P
   72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL??Architecture
CY7C1470BV33 CYPRESS-CY7C1470BV33 Datasheet
902Kb / 30P
   72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL Architecture
CY7C1474V33 CYPRESS-CY7C1474V33 Datasheet
378Kb / 28P
   72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL Architecture
CY7C1470BV25 CYPRESS-CY7C1470BV25_09 Datasheet
890Kb / 29P
   72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL??Architecture
CY7C1471V33 CYPRESS-CY7C1471V33_07 Datasheet
1Mb / 32P
   72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM with NoBL??Architecture
CY7C1471V25 CYPRESS-CY7C1471V25 Datasheet
373Kb / 30P
   72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM with NoBL Architecture
CY7C1460AV33 CYPRESS-CY7C1460AV33 Datasheet
395Kb / 27P
   36-Mbit (1M x 36/2M x 18/512K x 72) Pipelined SRAM with NoBL??Architecture
CY7C1460AV25 CYPRESS-CY7C1460AV25_06 Datasheet
511Kb / 27P
   36-Mbit (1M x 36/2M x 18/512K x 72) Pipelined SRAM with NoBL??Architecture
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.NET
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com