Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.NET

X  

SC4608EVB Datasheet(PDF) 11 Page - Semtech Corporation

Part # SC4608EVB
Description  Low Input, MHz Operation, High Efficiency Synchronous Buck
Download  19 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  SEMTECH [Semtech Corporation]
Direct Link  http://www.semtech.com
Logo SEMTECH - Semtech Corporation

SC4608EVB Datasheet(HTML) 11 Page - Semtech Corporation

Back Button SC4608EVB Datasheet HTML 7Page - Semtech Corporation SC4608EVB Datasheet HTML 8Page - Semtech Corporation SC4608EVB Datasheet HTML 9Page - Semtech Corporation SC4608EVB Datasheet HTML 10Page - Semtech Corporation SC4608EVB Datasheet HTML 11Page - Semtech Corporation SC4608EVB Datasheet HTML 12Page - Semtech Corporation SC4608EVB Datasheet HTML 13Page - Semtech Corporation SC4608EVB Datasheet HTML 14Page - Semtech Corporation SC4608EVB Datasheet HTML 15Page - Semtech Corporation Next Button
Zoom Inzoom in Zoom Outzoom out
 11 / 19 page
background image
11
 2006 Semtech Corp.
www.semtech.com
SC4608
POWER MANAGEMENT
Application Information (Cont.)
mode, the RMS value of the input capacitor can be cal-
culated from:
IN
2
OUT
IN
OUT
OMAX
)
RMS
(
CIN
V
)
V
V
(
V
I
I
=
This current gives the capacitor’s power loss as follows:
)
ESR
(
CIN
)
RMS
(
CIN
2
CIN
R
I
P
=
This capacitor’s RMS loss can be a significant part of the
total loss in the converter and reduce the overall con-
verter efficiency. The input ripple voltage mainly depends
on the input capacitor’s ESR and its capacitance for a
given load, input voltage and output voltage. Assuming
that the input current of the converter is constant, the
required input capacitance for a given voltage ripple can
be calculated by:
)
R
I
V
(
fs
)
D
1
(
D
I
C
)
ESR
(
CIN
OMAX
I
OMAX
IN
=
Where:
D = V
O/VI , duty ratio and
∆V
I = the given input voltage ripple.
Because the input capacitor is exposed to the large surge
current, attention is needed for the input capacitor. If
tantalum capacitors are used at the input side of the
converter, one needs to ensure that the RMS and surge
ratings are not exceeded. For generic tantalum capaci-
tors, it is wise to derate their voltage ratings at a ratio of
2 to protect these input capacitors.
Boost Capacitor Selection
The boost capacitor selection is based on its discharge
ripple voltage, worst case conduction time and boost
current. The worst case conduction time T
w can be esti-
mated as follows:
max
s
D
f
1
Tw
=
Where:
f
s = the switching frequency and
Dmax = maximum duty ratio.
The required minimum capacitance for boost capacitor
will be:
W
D
B
boost
T
V
I
C
=
Where:
I
B = the boost current and
V
D= discharge ripple voltage.
With f
s = 300kH, VD=0.3V and IB = 50mA, the required
capacitance for the boost capacitor is:
nF
528
95
.
0
k
300
1
3
.
0
05
.
0
D
f
1
V
I
C
max
s
D
B
boost
=
=
=
Power MOSFET Selection
The SC4608 can drive an N-MOSFET at the high side
and an N-MOSFET synchronous rectifier at the low side.
The use of the high side N-MOSFET will significantly re-
duce its conduction loss for high current. For the top
MOSFET, its total power loss includes its conduction loss,
switching loss, gate charge loss, output capacitance loss
and the loss related to the reverse recovery of the bot-
tom diode, shown as follows:
s
I
rr
OSS
s
GATE
GT
2
GS
GD
G
GATE
s
I
PEAK
_
TOP
ON
_
TOP
RMS
_
TOP
2
TOTAL
_
TOP
f
V
)
Q
Q
(
f
V
Q
)
Q
Q
(
R
V
f
V
I
R
I
P
+
+
+
+
+
=
Where:
R
G = gate drive resistor,
Q
GD = the gate to drain charge of the top MOSFET,
Q
GS2 = the gate to source charge of the top MOSFET,
Q
GT = the total gate charge of the top MOSFET,
Q
OSS = the output charge of the top MOSFET and
Q
rr = the reverse recovery charge of the bottom diode.
For the top MOSFET, it experiences high current and high
voltage overlap during each on/off transition. But for the
bottom MOSFET, its switching voltage is the bottom
diode’s forward drop during its on/off transition. So the
switching loss for the bottom MOSFET is negligible. Its
total power loss can be determined by:
F
AVG
D
s
GATE
GB
ON
_
BOT
RMS
_
BOT
2
TOTAL
_
BOT
V
_
I
f
V
Q
R
I
P
+
+
=
Where:
Q
GB = the total gate charge of the bottom MOSFET and
V
F = the forward voltage drop of the bottom diode.


Similar Part No. - SC4608EVB

ManufacturerPart #DatasheetDescription
logo
Semtech Corporation
SC4601 SEMTECH-SC4601 Datasheet
361Kb / 18P
   Low Input, High Efficiency Synchronous, Step Down Controller
SC4601EVB SEMTECH-SC4601EVB Datasheet
361Kb / 18P
   Low Input, High Efficiency Synchronous, Step Down Controller
SC4601IMSTR SEMTECH-SC4601IMSTR Datasheet
361Kb / 18P
   Low Input, High Efficiency Synchronous, Step Down Controller
SC4601IMSTRT SEMTECH-SC4601IMSTRT Datasheet
361Kb / 18P
   Low Input, High Efficiency Synchronous, Step Down Controller
SC4602A SEMTECH-SC4602A Datasheet
353Kb / 18P
   High Efficiency Synchronous, Step Down Controller
More results

Similar Description - SC4608EVB

ManufacturerPart #DatasheetDescription
logo
Semtech Corporation
SC4609 SEMTECH-SC4609 Datasheet
329Kb / 18P
   Low Input, MHz Operation, High Efficiency Synchronous Buck
SC4603 SEMTECH-SC4603_08 Datasheet
325Kb / 16P
   Very Low Input, MHz Operation,High Efficiency Synchronous Buck
SC4607 SEMTECH-SC4607 Datasheet
318Kb / 17P
   Very Low Input, MHz Operation, High Efficiency Synchronous Buck
SC4603 SEMTECH-SC4603 Datasheet
317Kb / 16P
   Very Low Input, MHz Operation, High Efficiency Synchronous Buck
logo
Texas Instruments
TPS40007-DIE TI1-TPS40007-DIE Datasheet
96Kb / 6P
[Old version datasheet]   LOW-INPUT, HIGH EFFICIENCY SYNCHRONOUS BUCK CONTROLLER
TPS40007DGQRG4 TI1-TPS40007DGQRG4 Datasheet
858Kb / 28P
[Old version datasheet]   LOW-INPUT HIGH-EFFICIENCY SYNCHRNOUS BUCK CONTROLLER
logo
Microchip Technology
MCP16323 MICROCHIP-MCP16323_16 Datasheet
677Kb / 32P
   18V Input, 3A Output, High Efficiency Synchronous Buck Regulator
07/14/15
logo
Micrel Semiconductor
MIC2182 MICREL-MIC2182_04 Datasheet
229Kb / 28P
   High-Efficiency Synchronous Buck Controller
logo
Diodes Incorporated
AP3409 DIODES-AP3409 Datasheet
486Kb / 11P
   HIGH EFFICIENCY SYNCHRONOUS BUCK CONVERTER
logo
Bel Fuse Inc.
YEV09T03 BEL-YEV09T03 Datasheet
574Kb / 10P
   High efficiency synchronous buck topology
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.NET
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com