Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.NET

X  

PCS2I99448G-32-LT Datasheet(PDF) 7 Page - PulseCore Semiconductor

Part # PCS2I99448G-32-LT
Description  3.3V/2.5V LVCMOS 1:12 Clock Fanout Buffer
Download  15 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  PULSECORE [PulseCore Semiconductor]
Direct Link  http://www.onsemi.com/
Logo PULSECORE - PulseCore Semiconductor

PCS2I99448G-32-LT Datasheet(HTML) 7 Page - PulseCore Semiconductor

Back Button PCS2I99448G-32-LT Datasheet HTML 3Page - PulseCore Semiconductor PCS2I99448G-32-LT Datasheet HTML 4Page - PulseCore Semiconductor PCS2I99448G-32-LT Datasheet HTML 5Page - PulseCore Semiconductor PCS2I99448G-32-LT Datasheet HTML 6Page - PulseCore Semiconductor PCS2I99448G-32-LT Datasheet HTML 7Page - PulseCore Semiconductor PCS2I99448G-32-LT Datasheet HTML 8Page - PulseCore Semiconductor PCS2I99448G-32-LT Datasheet HTML 9Page - PulseCore Semiconductor PCS2I99448G-32-LT Datasheet HTML 10Page - PulseCore Semiconductor PCS2I99448G-32-LT Datasheet HTML 11Page - PulseCore Semiconductor Next Button
Zoom Inzoom in Zoom Outzoom out
 7 / 15 page
background image
September 2006
PCS2I99448
rev 0.4
3.3V/2.5V LVCMOS 1:12 Clock Fanout Buffer
7 of 15
Notice: The information in this document is subject to change without notice.
APPLICATIONS INFORMATION
Timing Diagram
Figure 1. Output Clock Stop (CLK_STOP)
Driving Transmission Lines
The PCS2I99448 clock driver was designed to drive high
speed signals in a terminated transmission line
environment. To provide the optimum flexibility to the
user, the output drivers were designed to exhibit the
lowest impedance possible. With an output impedance of
17Ω (VCC=3.3V), the outputs can drive either parallel or
series terminated transmission lines. In most high
performance clock networks, point–to–point distribution of
signals is the method of choice. In a point–to–point
scheme, either series terminated or parallel terminated
transmission lines can be used. The parallel technique
terminates the signal at the end of the line with a 50Ω
resistance to VCC÷2.
Figure 2. Single versus Dual Transmission
Lines
This technique draws a fairly high level of DC current and
thus only a single terminated line can be driven by each
output of the PCS2I99448 clock driver. For the series
terminated case, however, there is no DC current draw;
thus, the outputs can drive multiple series terminated
lines. Figure 2 “Single versus Dual Transmission Lines”
illustrates an output driving a single series terminated line
versus two series terminated lines in parallel. When taken
to its extreme, the fanout of the PCS2I99448 clock driver
is effectively doubled due to its capability to drive multiple
lines at VCC=3.3V.
The waveform plots in Figure 3 “Single versus Dual Line
Termination Waveforms” show the simulation results of
an output driving a single line versus two lines. In both
Figure 3 . Single versus Dual Line Termination
Waveforms
cases, the drive capability of the PCS2I99448 output
buffer is more than sufficient to drive 50Ω transmission
lines on the incident edge. Note from the delay
measurements in the simulations a delta of only 43pS
exists between the two differently loaded outputs. This
suggests that the dual line driving need not be used
exclusively to maintain the tight output–to–output skew of
the PCS2I99448. The output waveform in Figure 3
“Single versus Dual Line Termination Waveforms” shows
a step in the waveform; this step is caused by the
impedance mismatch seen looking into the driver. The
parallel combination of the 33Ω series resistor plus the
output
impedance
does
not
match
the
parallel
combination of the line impedances. The voltage wave
launched down the two lines will equal:
VL = VS ( Z0 ÷ (RS+R0 +Z0))
Z0 = 50Ω|| 50Ω
RS = 33Ω|| 33Ω
R0 = 17Ω
VL = 3.0 ( 25 ÷ (16.5+17+25)
= 1.28V
At the load end the voltage will double, due to the near
unity reflection coefficient, to 2.5V. It will then increment
towards the quiescent 3.0V in steps separated by one
round trip delay (in this case 4.0nS).
Since this step is well above the threshold region it will
not cause any false clock triggering; however, designers
may be uncomfortable with unwanted reflections on the
line. To better match the impedances when driving
PCS2I99448
OUTPUT BUFFER
17Ω
Z0=50Ω
RS=33Ω
PCS2I99448
OUTPUT BUFFER
17Ω
Z0=50Ω
RS=33Ω
Z0=50Ω
RS=33Ω
CCLK or
PCLK
CLK _ STOP
Q0 to Q11
3.0
2.5
2.0
1.5
1.0
0.5
0
24
6
8
10
12
14
TIME (nS)
In
OutA
tD = 3.8956
OutB
tD = 3.9386


Similar Part No. - PCS2I99448G-32-LT

ManufacturerPart #DatasheetDescription
logo
PulseCore Semiconductor
PCS2I99446 PULSECORE-PCS2I99446 Datasheet
579Kb / 14P
   2.5V and 3.3V LVCMOS Clock Distribution Buffer
PCS2I99446G-32-ER PULSECORE-PCS2I99446G-32-ER Datasheet
579Kb / 14P
   2.5V and 3.3V LVCMOS Clock Distribution Buffer
PCS2I99446G-32-ET PULSECORE-PCS2I99446G-32-ET Datasheet
579Kb / 14P
   2.5V and 3.3V LVCMOS Clock Distribution Buffer
PCS2I99446G-32-LR PULSECORE-PCS2I99446G-32-LR Datasheet
579Kb / 14P
   2.5V and 3.3V LVCMOS Clock Distribution Buffer
PCS2I99446G-32-LT PULSECORE-PCS2I99446G-32-LT Datasheet
579Kb / 14P
   2.5V and 3.3V LVCMOS Clock Distribution Buffer
More results

Similar Description - PCS2I99448G-32-LT

ManufacturerPart #DatasheetDescription
logo
Motorola, Inc
MPC9448 MOTOROLA-MPC9448 Datasheet
263Kb / 12P
   3.3V/2.5V LVCMOS 1:12 Clock Fanout Buffer
logo
Asahi Kasei Microsystem...
AK8180C AKM-AK8180C Datasheet
1,006Kb / 12P
   2.5V, 3.3V LVCMOS 1:12 Clock Fanout Buffer
logo
Alliance Semiconductor ...
ASM2I99448 ALSC-ASM2I99448 Datasheet
594Kb / 15P
   3.3V/2.5V LVCMOS 1:12 Clock Fanout Buffer
ASM2I99456 ALSC-ASM2I99456 Datasheet
554Kb / 14P
   3.3V/2.5V LVCMOS Clock Fanout Buffer
logo
Renesas Technology Corp
MPC9447 RENESAS-MPC9447 Datasheet
325Kb / 12P
   3.3V, 2.5V, 1:9 LVCMOS Clock Fanout Buffer
2019
logo
Alliance Semiconductor ...
ASM2I99447 ALSC-ASM2I99447 Datasheet
565Kb / 14P
   3.3V/2.5V 1:9 LVCMOS Clock Fanout Buffer
logo
PulseCore Semiconductor
PCS2I99447 PULSECORE-PCS2I99447 Datasheet
567Kb / 14P
   3.3V/2.5V 1:9 LVCMOS Clock Fanout Buffer
ASM2I99456 PULSECORE-ASM2I99456 Datasheet
558Kb / 14P
   3.3V/2.5V LVCMOS Clock Fanout Buffer
logo
Renesas Technology Corp
MPC9443 RENESAS-MPC9443 Datasheet
469Kb / 16P
   2.5V, 3.3V LVCMOS Clock Fanout Buffer
2019
logo
Motorola, Inc
MPC9447 MOTOROLA-MPC9447 Datasheet
231Kb / 12P
   3.3V/2.5V 1:9 LVCMOS Clock Fanout Buffer
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.NET
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com