Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.NET

X  

CY7C1513JV18 Datasheet(PDF) 8 Page - Cypress Semiconductor

Part # CY7C1513JV18
Description  72-Mbit QDR-II SRAM 4-Word Burst Architecture
Download  29 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  CYPRESS [Cypress Semiconductor]
Direct Link  http://www.cypress.com
Logo CYPRESS - Cypress Semiconductor

CY7C1513JV18 Datasheet(HTML) 8 Page - Cypress Semiconductor

Back Button CY7C1513JV18 Datasheet HTML 4Page - Cypress Semiconductor CY7C1513JV18 Datasheet HTML 5Page - Cypress Semiconductor CY7C1513JV18 Datasheet HTML 6Page - Cypress Semiconductor CY7C1513JV18 Datasheet HTML 7Page - Cypress Semiconductor CY7C1513JV18 Datasheet HTML 8Page - Cypress Semiconductor CY7C1513JV18 Datasheet HTML 9Page - Cypress Semiconductor CY7C1513JV18 Datasheet HTML 10Page - Cypress Semiconductor CY7C1513JV18 Datasheet HTML 11Page - Cypress Semiconductor CY7C1513JV18 Datasheet HTML 12Page - Cypress Semiconductor Next Button
Zoom Inzoom in Zoom Outzoom out
 8 / 29 page
background image
CY7C1511JV18, CY7C1526JV18
CY7C1513JV18, CY7C1515JV18
Document Number: 001-12560 Rev. *E
Page 8 of 29
Functional Overview
The
CY7C1511JV18,
CY7C1526JV18,
CY7C1513JV18,
CY7C1515JV18 are synchronous pipelined Burst SRAMs with a
read port and a write port. The read port is dedicated to read
operations and the write port is dedicated to write operations.
Data flows into the SRAM through the write port and flows out
through the read port. These devices multiplex the address
inputs to minimize the number of address pins required. By
having separate read and write ports, the QDR-II completely
eliminates the need to “turn-around” the data bus and avoids any
possible data contention, thereby simplifying system design.
Each access consists of four 8-bit data transfers in the case of
CY7C1511JV18, four 9-bit data transfers in the case of
CY7C1526JV18, four 18-bit data transfers in the case of
CY7C1513JV18, and four 36-bit data transfers in the case of
CY7C1515JV18 in two clock cycles.
This device operates with a read latency of one and half cycles
when DOFF pin is tied HIGH. When DOFF pin is set LOW or
connected to VSS then device behaves in QDR-I mode with a
read latency of one clock cycle.
Accesses for both ports are initiated on the positive input clock
(K). All synchronous input timing is referenced from the rising
edge of the input clocks (K and K) and all output timing is refer-
enced to the output clocks (C and C, or K and K when in single
clock mode).
All synchronous data inputs (D[x:0]) pass through input registers
controlled by the input clocks (K and K). All synchronous data
outputs (Q[x:0]) pass through output registers controlled by the
rising edge of the output clocks (C and C, or K and K when in
single clock mode).
All synchronous control (RPS, WPS, BWS[x:0]) inputs pass
through input registers controlled by the rising edge of the input
clocks (K and K).
CY7C1513JV18 is described in the following sections. The same
basic descriptions apply to CY7C1511JV18, CY7C1526JV18
and CY7C1515JV18.
Read Operations
The CY7C1513JV18 is organized internally as four arrays of 1M
x 18. Accesses are completed in a burst of four sequential 18-bit
data words. Read operations are initiated by asserting RPS
active at the rising edge of the positive input clock (K). The
address presented to the address inputs is stored in the read
address register. Following the next K clock rise, the corre-
sponding lowest order 18-bit word of data is driven onto the
Q[17:0] using C as the output timing reference. On the subse-
quent rising edge of C, the next 18-bit data word is driven onto
the Q[17:0]. This process continues until all four 18-bit data words
have been driven out onto Q[17:0]. The requested data is valid
0.45 ns from the rising edge of the output clock (C or C, or K or
K when in single clock mode). To maintain the internal logic, each
read access must be allowed to complete. Each read access
consists of four 18-bit data words and takes two clock cycles to
complete. Therefore, read accesses to the device cannot be
initiated on two consecutive K clock rises. The internal logic of
the device ignores the second read request. Read accesses are
initiated on every other K clock rise. Doing so pipelines the data
flow such that data is transferred out of the device on every rising
edge of the output clocks (C and C, or K and K when in single
clock mode).
When the read port is deselected, the CY7C1513JV18 first
completes the pending read transactions. Synchronous internal
circuitry automatically tri-states the outputs following the next
rising edge of the positive output clock (C). This enables for a
seamless transition between devices without the insertion of wait
states in a depth expanded memory.
Write Operations
Write operations are initiated by asserting WPS active at the
rising edge of the positive input clock (K). On the following K
clock rise the data presented to D[17:0] is latched and stored into
the lower 18-bit write data register, provided BWS[1:0] are both
asserted active. On the subsequent rising edge of the negative
input clock (K) the information presented to D[17:0] is also stored
into the write data register, provided BWS[1:0] are both asserted
active. This process continues for one more cycle until four 18-bit
words (a total of 72 bits) of data are stored in the SRAM. The 72
bits of data are then written into the memory array at the specified
location. Therefore, write accesses to the device cannot be
initiated on two consecutive K clock rises. The internal logic of
the device ignores the second write request. Write accesses are
initiated on every other rising edge of the positive input clock (K).
Doing so pipelines the data flow such that 18 bits of data is trans-
ferred into the device on every rising edge of the input clocks (K
and K).
When deselected, the write port ignores all inputs after the
pending write operations have been completed.
Byte Write Operations
Byte write operations are supported by the CY7C1513JV18. A
write operation is initiated as described in the Write Operations
section. The bytes that are written are determined by BWS0 and
BWS1, which are sampled with each set of 18-bit data words.
Asserting the byte write select input during the data portion of a
write latches the data being presented and writes it into the
device. Deasserting the byte write select input during the data
portion of a write enables the data stored in the device for that
byte to remain unaltered. This feature is used to simplify read,
modify, or write operations to a byte write operation.
Single Clock Mode
The CY7C1511JV18 can be used with a single clock that controls
both the input and output registers. In this mode the device
recognizes only a single pair of input clocks (K and K) that control
both the input and output registers. This operation is identical to
the operation if the device had zero skew between the K/K and
C/C clocks. All timing parameters remain the same in this mode.
To use this mode of operation, the user must tie C and C HIGH
at power on. This function is a strap option and not alterable
during device operation.
[+] Feedback


Similar Part No. - CY7C1513JV18

ManufacturerPart #DatasheetDescription
logo
Cypress Semiconductor
CY7C1513AV18 CYPRESS-CY7C1513AV18 Datasheet
709Kb / 31P
   72-Mbit QDR??II SRAM 4-Word Burst Architecture
CY7C1513AV18-167BZC CYPRESS-CY7C1513AV18-167BZC Datasheet
709Kb / 31P
   72-Mbit QDR??II SRAM 4-Word Burst Architecture
CY7C1513AV18-167BZI CYPRESS-CY7C1513AV18-167BZI Datasheet
709Kb / 31P
   72-Mbit QDR??II SRAM 4-Word Burst Architecture
CY7C1513AV18-167BZXC CYPRESS-CY7C1513AV18-167BZXC Datasheet
709Kb / 31P
   72-Mbit QDR??II SRAM 4-Word Burst Architecture
CY7C1513AV18-167BZXI CYPRESS-CY7C1513AV18-167BZXI Datasheet
709Kb / 31P
   72-Mbit QDR??II SRAM 4-Word Burst Architecture
More results

Similar Description - CY7C1513JV18

ManufacturerPart #DatasheetDescription
logo
Cypress Semiconductor
CY7C1511KV18 CYPRESS-CY7C1511KV18_09 Datasheet
837Kb / 31P
   72-Mbit QDR II SRAM 4-Word Burst Architecture
CY7C1561KV18 CYPRESS-CY7C1561KV18 Datasheet
833Kb / 28P
   72-Mbit QDR-II SRAM 4-Word Burst Architecture
CY7C1511V18 CYPRESS-CY7C1511V18 Datasheet
381Kb / 23P
   72-Mbit QDR??II SRAM 4-Word Burst Architecture
CY7C2561KV18 CYPRESS-CY7C2561KV18 Datasheet
845Kb / 29P
   72-Mbit QDR-II SRAM 4-Word Burst Architecture
CY7C1511KV18 CYPRESS-CY7C1511KV18_11 Datasheet
807Kb / 33P
   72-Mbit QDR II SRAM 4-Word Burst Architecture
CY7C1511AV18 CYPRESS-CY7C1511AV18 Datasheet
709Kb / 31P
   72-Mbit QDR??II SRAM 4-Word Burst Architecture
CY7C1513KV18 CYPRESS-CY7C1513KV18 Datasheet
831Kb / 31P
   72-Mbit QDR-II SRAM 4-Word Burst Architecture
CY7C1511V18 CYPRESS-CY7C1511V18_06 Datasheet
464Kb / 28P
   72-Mbit QDR?? II SRAM 4-Word Burst Architecture
CY7C1510KV18 CYPRESS-CY7C1510KV18_09 Datasheet
836Kb / 30P
   72-Mbit QDR-II SRAM 2-Word Burst Architecture
CY7C1510JV18 CYPRESS-CY7C1510JV18_09 Datasheet
654Kb / 26P
   72-Mbit QDR??II SRAM 2-Word Burst Architecture
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.NET
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com