Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.NET

X  

CY7C1565KV18-550BZI Datasheet(PDF) 8 Page - Cypress Semiconductor

Part # CY7C1565KV18-550BZI
Description  72-Mbit QDR-II SRAM 4-Word Burst Architecture
Download  28 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  CYPRESS [Cypress Semiconductor]
Direct Link  http://www.cypress.com
Logo CYPRESS - Cypress Semiconductor

CY7C1565KV18-550BZI Datasheet(HTML) 8 Page - Cypress Semiconductor

Back Button CY7C1565KV18-550BZI Datasheet HTML 4Page - Cypress Semiconductor CY7C1565KV18-550BZI Datasheet HTML 5Page - Cypress Semiconductor CY7C1565KV18-550BZI Datasheet HTML 6Page - Cypress Semiconductor CY7C1565KV18-550BZI Datasheet HTML 7Page - Cypress Semiconductor CY7C1565KV18-550BZI Datasheet HTML 8Page - Cypress Semiconductor CY7C1565KV18-550BZI Datasheet HTML 9Page - Cypress Semiconductor CY7C1565KV18-550BZI Datasheet HTML 10Page - Cypress Semiconductor CY7C1565KV18-550BZI Datasheet HTML 11Page - Cypress Semiconductor CY7C1565KV18-550BZI Datasheet HTML 12Page - Cypress Semiconductor Next Button
Zoom Inzoom in Zoom Outzoom out
 8 / 28 page
background image
PRELIMINARY
CY7C1561KV18, CY7C1576KV18
CY7C1563KV18, CY7C1565KV18
Document Number: 001-15878 Rev. *E
Page 8 of 28
Functional Overview
The
CY7C1561KV18,
CY7C1576KV18,
CY7C1563KV18,
CY7C1565KV18 are synchronous pipelined Burst SRAMs
equipped with a read port and a write port. The read port is
dedicated to read operations and the write port is dedicated to
write operations. Data flows into the SRAM through the write port
and flows out through the read port. These devices multiplex the
address inputs to minimize the number of address pins required.
By having separate read and write ports, the QDR-II+ completely
eliminates the need to “turnaround” the data bus and avoids any
possible data contention, thereby simplifying system design.
Each access consists of four 8-bit data transfers in the case of
CY7C1561KV18, four 9-bit data transfers in the case of
CY7C1576KV18, four 18-bit data transfers in the case of
CY7C1563KV18, and four 36-bit data transfers in the case of
CY7C1565KV18, in two clock cycles.
These devices operate with a read latency of two and half cycles
when DOFF pin is tied HIGH. When DOFF pin is set LOW or
connected to VSS then device behaves in QDR-I mode with a
read latency of one clock cycle.
Accesses for both ports are initiated on the positive input clock
(K). All synchronous input and output timing are referenced from
the rising edge of the input clocks (K and K).
All synchronous data inputs (D[x:0]) pass through input registers
controlled by the input clocks (K and K). All synchronous data
outputs (Q[x:0]) outputs pass through output registers controlled
by the rising edge of the input clocks (K and K) as well.
All synchronous control (RPS, WPS, NWS[x:0], BWS[x:0]) inputs
pass through input registers controlled by the rising edge of the
input clocks (K and K).
CY7C1563KV18 is described in the following sections. The
same
basic
descriptions
apply
to
CY7C1561KV18,
CY7C1576KV18 and CY7C1565KV18.
Read Operations
The CY7C1563KV18 is organized internally as four arrays of 1M
x 18. Accesses are completed in a burst of four sequential 18-bit
data words. Read operations are initiated by asserting RPS
active at the rising edge of the positive input clock (K). The
address presented to the address inputs is stored in the read
address register. Following the next two K clock rise, the corre-
sponding lowest order 18-bit word of data is driven onto the
Q[17:0] using K as the output timing reference. On the subse-
quent rising edge of K, the next 18-bit data word is driven onto
the Q[17:0]. This process continues until all four 18-bit data words
have been driven out onto Q[17:0]. The requested data is valid
0.45 ns from the rising edge of the input clock (K or K). To
maintain the internal logic, each read access must be allowed to
complete. Each read access consists of four 18-bit data words
and takes two clock cycles to complete. Therefore, read
accesses to the device can not be initiated on two consecutive
K clock rises. The internal logic of the device ignores the second
read request. Read accesses can be initiated on every other K
clock rise. Doing so pipelines the data flow such that data is
transferred out of the device on every rising edge of the input
clocks (K and K).
When the read port is deselected, the CY7C1563KV18 first
completes the pending read transactions. Synchronous internal
circuitry automatically tristates the outputs following the next
rising edge of the negative input clock (K). This enables for a
seamless transition between devices without the insertion of wait
states in a depth expanded memory.
Write Operations
Write operations are initiated by asserting WPS active at the
rising edge of the positive input clock (K). On the following K
clock rise the data presented to D[17:0] is latched and stored into
the lower 18-bit write data register, provided BWS[1:0] are both
asserted active. On the subsequent rising edge of the negative
input clock (K) the information presented to D[17:0] is also stored
into the write data register, provided BWS[1:0] are both asserted
active. This process continues for one more cycle until four 18-bit
words (a total of 72 bits) of data are stored in the SRAM. The 72
bits of data are then written into the memory array at the specified
location. Therefore, write accesses to the device can not be
initiated on two consecutive K clock rises. The internal logic of
the device ignores the second write request. Write accesses can
be initiated on every other rising edge of the positive input clock
(K). Doing so pipelines the data flow such that 18 bits of data can
be transferred into the device on every rising edge of the input
clocks (K and K).
When deselected, the write port ignores all inputs after the
pending write operations have been completed.
Byte Write Operations
Byte write operations are supported by the CY7C1563KV18. A
write operation is initiated as described in the Write Operations
section. The bytes that are written are determined by BWS0 and
BWS1, which are sampled with each set of 18-bit data words.
Asserting the appropriate Byte Write Select input during the data
portion of a write latches the data being presented and writes it
into the device. Deasserting the Byte Write Select input during
the data portion of a write enables the data stored in the device
for that byte to remain unaltered. This feature can be used to
simplify read, modify, or write operations to a byte write
operation.
Concurrent Transactions
The read and write ports on the CY7C1563KV18 operates
completely independently of one another. As each port latches
the address inputs on different clock edges, the user can read or
write to any location, regardless of the transaction on the other
port. If the ports access the same location when a read follows
a write in successive clock cycles, the SRAM delivers the most
recent information associated with the specified address
location. This includes forwarding data from a write cycle that
was initiated on the previous K clock rise.
[+] Feedback


Similar Part No. - CY7C1565KV18-550BZI

ManufacturerPart #DatasheetDescription
logo
Cypress Semiconductor
CY7C1565KV18-500BZC CYPRESS-CY7C1565KV18-500BZC Datasheet
856Kb / 29P
   72-Mbit QDR II SRAM 4-Word Burst Architecture (2.5 Cycle Read Latency)
CY7C1565KV18-500BZI CYPRESS-CY7C1565KV18-500BZI Datasheet
856Kb / 29P
   72-Mbit QDR II SRAM 4-Word Burst Architecture (2.5 Cycle Read Latency)
CY7C1565KV18-500BZXC CYPRESS-CY7C1565KV18-500BZXC Datasheet
856Kb / 29P
   72-Mbit QDR II SRAM 4-Word Burst Architecture (2.5 Cycle Read Latency)
CY7C1565KV18-500BZXI CYPRESS-CY7C1565KV18-500BZXI Datasheet
856Kb / 29P
   72-Mbit QDR II SRAM 4-Word Burst Architecture (2.5 Cycle Read Latency)
More results

Similar Description - CY7C1565KV18-550BZI

ManufacturerPart #DatasheetDescription
logo
Cypress Semiconductor
CY7C1511KV18 CYPRESS-CY7C1511KV18_09 Datasheet
837Kb / 31P
   72-Mbit QDR II SRAM 4-Word Burst Architecture
CY7C1511V18 CYPRESS-CY7C1511V18 Datasheet
381Kb / 23P
   72-Mbit QDR??II SRAM 4-Word Burst Architecture
CY7C1511JV18 CYPRESS-CY7C1511JV18 Datasheet
703Kb / 29P
   72-Mbit QDR-II SRAM 4-Word Burst Architecture
CY7C2561KV18 CYPRESS-CY7C2561KV18 Datasheet
845Kb / 29P
   72-Mbit QDR-II SRAM 4-Word Burst Architecture
CY7C1511KV18 CYPRESS-CY7C1511KV18_11 Datasheet
807Kb / 33P
   72-Mbit QDR II SRAM 4-Word Burst Architecture
CY7C1511AV18 CYPRESS-CY7C1511AV18 Datasheet
709Kb / 31P
   72-Mbit QDR??II SRAM 4-Word Burst Architecture
CY7C1513KV18 CYPRESS-CY7C1513KV18 Datasheet
831Kb / 31P
   72-Mbit QDR-II SRAM 4-Word Burst Architecture
CY7C1511V18 CYPRESS-CY7C1511V18_06 Datasheet
464Kb / 28P
   72-Mbit QDR?? II SRAM 4-Word Burst Architecture
CY7C1510KV18 CYPRESS-CY7C1510KV18_09 Datasheet
836Kb / 30P
   72-Mbit QDR-II SRAM 2-Word Burst Architecture
CY7C1510JV18 CYPRESS-CY7C1510JV18_09 Datasheet
654Kb / 26P
   72-Mbit QDR??II SRAM 2-Word Burst Architecture
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.NET
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com