Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.NET

X  

CY14B108K-ZS20XIT Datasheet(PDF) 9 Page - Cypress Semiconductor

Part # CY14B108K-ZS20XIT
Description  8 Mbit (1024K x 8/512K x 16) nvSRAM with Real Time Clock
Download  29 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  CYPRESS [Cypress Semiconductor]
Direct Link  http://www.cypress.com
Logo CYPRESS - Cypress Semiconductor

CY14B108K-ZS20XIT Datasheet(HTML) 9 Page - Cypress Semiconductor

Back Button CY14B108K-ZS20XIT Datasheet HTML 5Page - Cypress Semiconductor CY14B108K-ZS20XIT Datasheet HTML 6Page - Cypress Semiconductor CY14B108K-ZS20XIT Datasheet HTML 7Page - Cypress Semiconductor CY14B108K-ZS20XIT Datasheet HTML 8Page - Cypress Semiconductor CY14B108K-ZS20XIT Datasheet HTML 9Page - Cypress Semiconductor CY14B108K-ZS20XIT Datasheet HTML 10Page - Cypress Semiconductor CY14B108K-ZS20XIT Datasheet HTML 11Page - Cypress Semiconductor CY14B108K-ZS20XIT Datasheet HTML 12Page - Cypress Semiconductor CY14B108K-ZS20XIT Datasheet HTML 13Page - Cypress Semiconductor Next Button
Zoom Inzoom in Zoom Outzoom out
 9 / 29 page
background image
CY14B108K, CY14B108M
Document #: 001-47378 Rev. *B
Page 9 of 29
Figure 3. Watchdog Timer Block Diagram
.
Power Monitor
The CY14B108K provides a power management scheme with
power fail interrupt capability. It also controls the internal switch
to backup power for the clock and protects the memory from low
VCC access. The power monitor is based on an internal band gap
reference circuit that compares the VCC voltage to VSWITCH
threshold.
As described in the section AutoStore Operation on page 3,
when VSWITCH is reached as VCC decays from power loss, a data
STORE operation is initiated from SRAM to the nonvolatile
elements, securing the last SRAM data state. Power is also
switched from VCC to the backup supply (battery or capacitor) to
operate the RTC oscillator.
When operating from the backup source, read and write opera-
tions to nvSRAM are inhibited and the clock functions are not
available to the user. The clock continues to operate in the
background. The updated clock data is available to the user
tHRECALL delay after VCC is restored to the device (see
AutoStore/Power Up RECALL on page 21)
Interrupts
The CY14B108K has Flags register, Interrupt register, and
Interrupt logic that can signal interrupt to the microcontroller.
There are three potential sources for interrupt: watchdog timer,
power monitor, and alarm timer. Each of these can be individually
enabled to drive the INT pin by appropriate setting in the Interrupt
register (0xFFFF6). In addition, each has an associated flag bit
in the Flags register (0xFFFF0) that the host processor uses to
determine the cause of the interrupt. The INT pin driver has two
bits that specify its behavior when an interrupt occurs.
An Interrupt is raised only if both a flag is raised by one of the
three sources and the respective interrupt enable bit in Interrupts
register is enabled (set to ‘1’). After an interrupt source is active,
two programmable bits, H/L and P/L, determine the behavior of
the output pin driver on INT pin. These two bits are located in the
Interrupt register and can be used to drive level or pulse mode
output from the INT pin. In pulse mode, the pulse width is
internally fixed at approximately 200 ms. This mode is intended
to reset a host microcontroller. In the level mode, the pin goes to
its active polarity until the Flags register is read by the user. This
mode is used as an interrupt to a host microcontroller. The
control bits are summarized in the following section.
Interrupts are only generated while working on normal power and
are not triggered when system is running in backup power mode.
Note CY14B108K generates valid interrupts only after the
Powerup Recall sequence is completed. All events on INT pin
must be ignored for tHRECALL duration after powerup.
Interrupt Register
Watchdog Interrupt Enable (WIE). When set to ‘1’, the
watchdog timer drives the INT pin and an internal flag when a
watchdog time out occurs. When WIE is set to ‘0’, the watchdog
timer only affects the WDF flag in Flags register.
Alarm Interrupt Enable (AIE). When set to ‘1’, the alarm match
drives the INT pin and an internal flag. When AIE is set to ‘0’, the
alarm match only affects the AF Flags register.
Power Fail Interrupt Enable (PFE). When set to ‘1’, the power
fail monitor drives the pin and an internal flag. When PFE is set
to ‘0’, the power fail monitor only affects the PF flag in Flags
register.
High/Low (H/L). When set to a ‘1’, the INT pin is active HIGH
and the driver mode is push pull. The INT pin drives high only
when VCC is greater than VSWITCH. When set to a ‘0’, the INT pin
is active LOW and the drive mode is open drain. The INT pin
must be pulled up to Vcc by a 10k resistor while using the
interrupt in active LOW mode.
Pulse/Level (P/L). When set to a ‘1’ and an interrupt occurs, the
INT pin is driven for approximately 200 ms. When P/L is set to a
‘0’, the INT pin is driven high or low (determined by H/L) until the
Flags or Control register is read.
When an enabled interrupt source activates the INT pin, an
external host reads the Flags registers to determine the cause.
Remember that all flags are cleared when the register is read. If
the INT pin is programmed for Level mode, then the condition
clears and the INT pin returns to its inactive state. If the pin is
programmed for Pulse mode, then reading the flag also clears
the flag and the pin. The pulse does not complete its specified
duration if the Flags register is read. If the INT pin is used as a
host reset, the Flags register is not read during a reset
Flags Register
The Flag register has three flag bits: WDF, AF, and PF, which can
be used to generate an interrupt. They are set by the watchdog
timeout, alarm match, or power fail monitor respectively. The
processor can either poll this register or enable interrupts when
a flag is set. These flags are automatically reset when the
register is read. The flags register is automatically loaded with
the value 0x00 on power up (except for the OSCF bit. See
Stopping and Starting the Oscillator on page 7)
1 Hz
Oscillator
Clock
Divider
Counter
Zero
Compare
WDF
WDS
Load
Register
WDW
D
Q
Q
Watchdog
Register
write to
Watchdog
Register
32 Hz
32,768 KHz
[+] Feedback


Similar Part No. - CY14B108K-ZS20XIT

ManufacturerPart #DatasheetDescription
logo
Cypress Semiconductor
CY14B108K-ZS25XI CYPRESS-CY14B108K-ZS25XI Datasheet
1,014Kb / 31P
   8 Mbit (1024 K x 8/512 K x 16) nvSRAM with Real Time Clock
CY14B108K-ZS25XI CYPRESS-CY14B108K-ZS25XI Datasheet
1Mb / 33P
   8-Mbit (1024 K x 8/512 K x 16) nvSRAM with Real Time Clock
CY14B108K-ZS25XI CYPRESS-CY14B108K-ZS25XI Datasheet
1Mb / 34P
   8-Mbit (1024 K 횞 8/512 K 횞 16) nvSRAM with Real Time Clock
CY14B108K-ZS25XIT CYPRESS-CY14B108K-ZS25XIT Datasheet
1,014Kb / 31P
   8 Mbit (1024 K x 8/512 K x 16) nvSRAM with Real Time Clock
CY14B108K-ZS25XIT CYPRESS-CY14B108K-ZS25XIT Datasheet
1Mb / 33P
   8-Mbit (1024 K x 8/512 K x 16) nvSRAM with Real Time Clock
More results

Similar Description - CY14B108K-ZS20XIT

ManufacturerPart #DatasheetDescription
logo
Cypress Semiconductor
CY14B108L CYPRESS-CY14B108L Datasheet
860Kb / 24P
   8 Mbit (1024K x 8/512K x 16) nvSRAM
CY14E108L CYPRESS-CY14E108L Datasheet
611Kb / 20P
   8 Mbit (1024K x 8/512K x 16) nvSRAM
CY14B104KA CYPRESS-CY14B104KA Datasheet
1,000Kb / 31P
   4 Mbit (512K x 8/256K x 16) nvSRAM with Real-Time-Clock
CY14B104K CYPRESS-CY14B104K Datasheet
905Kb / 33P
   4 Mbit (512K x 8/256K x 16) nvSRAM with Real Time Clock
CY14E104K CYPRESS-CY14E104K Datasheet
732Kb / 28P
   4 Mbit (512K x 8 / 256K x 16) nvSRAM with Real-Time-Clock
CY14B101KA CYPRESS-CY14B101KA_11 Datasheet
1Mb / 34P
   1 Mbit (128K x 8/64K x 16) nvSRAM with Real Time Clock
CY14B101KA CYPRESS-CY14B101KA Datasheet
972Kb / 29P
   1 Mbit (128K x 8/64K x 16) nvSRAM with Real Time Clock
CY14B108K CYPRESS-CY14B108K_11 Datasheet
1,014Kb / 31P
   8 Mbit (1024 K x 8/512 K x 16) nvSRAM with Real Time Clock
CY14B101K CYPRESS-CY14B101K_09 Datasheet
796Kb / 28P
   1 Mbit (128K x 8) nvSRAM With Real Time Clock
CY14B101K_0711 CYPRESS-CY14B101K_0711 Datasheet
717Kb / 24P
   1 Mbit (128K x 8) nvSRAM With Real Time Clock
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.NET
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com