Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.NET

X  

SC4525DEVB Datasheet(PDF) 11 Page - Semtech Corporation

Part # SC4525DEVB
Description  18V, 3A, 350kHz Step-Down Switching Regulator
Download  21 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  SEMTECH [Semtech Corporation]
Direct Link  http://www.semtech.com
Logo SEMTECH - Semtech Corporation

SC4525DEVB Datasheet(HTML) 11 Page - Semtech Corporation

Back Button SC4525DEVB Datasheet HTML 7Page - Semtech Corporation SC4525DEVB Datasheet HTML 8Page - Semtech Corporation SC4525DEVB Datasheet HTML 9Page - Semtech Corporation SC4525DEVB Datasheet HTML 10Page - Semtech Corporation SC4525DEVB Datasheet HTML 11Page - Semtech Corporation SC4525DEVB Datasheet HTML 12Page - Semtech Corporation SC4525DEVB Datasheet HTML 13Page - Semtech Corporation SC4525DEVB Datasheet HTML 14Page - Semtech Corporation SC4525DEVB Datasheet HTML 15Page - Semtech Corporation Next Button
Zoom Inzoom in Zoom Outzoom out
 11 / 21 page
background image
© 2011 Semtech Corp.
www.semtech.com
SC4525D
11
Applications Information (Cont.)
switching frequency. The measured minimum off time is
100ns typically. If the required duty cycle is higher than
the attainable maximum, then the output voltage will not
be able to reach its set value in continuous-conduction
mode.
Inductor Selection
The inductor ripple current for a non-synchronous step-
down converter in continuous-conduction mode is
(3)
where F
SW is the switching frequency (350kHz) and L1 is
the inductance.
An inductor ripple current between 20% to 50% of the
maximum load current, I
O, gives a good compromise
among efficiency, cost and size. Re-arranging Equation (3)
and assuming 35% inductor ripple current, the inductor is
given by
(4)
If the input voltage varies over a wide range, then choose
L
1 based on the nominal input voltage. Always verify
converter operation at the input voltage extremes.
The peak current limit of SC4525D power transistor is at
least 3.9A. The maximum deliverable load current for the
SC4525D is 3.9A minus one half of the inductor ripple
current.
Input Decoupling Capacitor
The input capacitor should be chosen to handle the RMS
ripple current of a buck converter. This value is given by
(5)
The input capacitance must also be high enough to keep
input ripple voltage within specification. This is important
in reducing the conductive EMI from the regulator. The
input capacitance can be estimated from
(6)
CESAT
D
IN
D
O
V
V
V
V
V
D
+
+
=
=
1
V
0
.
1
V
R
R
O
6
4
1
SW
D
O
L
L
F
)
D
1
(
)
V
V
(
I
+
=
D
SW
O
D
O
1
F
I
%
20
)
D
1
(
)
V
V
(
L
+
=
)
D
1
(
D
I
I
O
CIN
_
RMS
=


+
D
=
D
O
SW
L
O
C
F
8
1
ESR
I
V
SW
IN
O
IN
F
V
4
I
C
D
>
,
R
G
R
G
S
CA
PWM
)
/
s
Q
/
s
1
()
/
s
1
(
)
C
R
s
1
(
G
V
V
2
n
2
n
p
O
ESR
PWM
c
o
ω
+
ω
+
ω
+
+
=
7
1
Z
5
R
F
2
1
C
π
=
7
1
P
8
R
F
2
1
C
π
=
,
C
R
1
O
p
ω
,
C
R
1
O
ESR
Z =
ω
k
3
.
22
10
28
.
0
10
R
3
7
20
9
.
15
=
=
nF
45
.
0
10
1
.
22
10
16
2
1
C
3
3
5
=
π
=
pF
12
10
1
.
22
10
600
2
1
C
3
3
8
=
π
=


π
=
O
FB
O
C
S
CA
C
V
V
C
F
2
1
R
G
1
log
20
A
dB
9
.
15
3
.
3
0
.
1
10
22
10
80
2
1
10
1
.
6
28
1
log
20
A
6
3
3
C
=
π
=
m
7
g
10
R
20
C
A
=
CESAT
D
IN
D
O
V
V
V
V
V
D
+
+
=
=
1
V
0
.
1
V
R
R
O
6
4
1
SW
D
O
L
L
F
)
D
1
(
)
V
V
(
I
+
=
D
SW
O
D
O
1
F
I
%
20
)
D
1
(
)
V
V
(
L
+
=
)
D
1
(
D
I
I
O
CIN
_
RMS
=


+
D
=
D
O
SW
L
O
C
F
8
1
ESR
I
V
SW
IN
O
IN
F
V
4
I
C
D
>
,
R
G
R
G
S
CA
PWM
)
/
s
Q
/
s
1
()
/
s
1
(
)
C
R
s
1
(
G
V
V
2
n
2
n
p
O
ESR
PWM
c
o
ω
+
ω
+
ω
+
+
=
7
1
Z
5
R
F
2
1
C
π
=
7
1
P
8
R
F
2
1
C
π
=
,
C
R
1
O
p
ω
,
C
R
1
O
ESR
Z =
ω
k
3
.
22
10
28
.
0
10
R
3
7
20
9
.
15
=
=
nF
45
.
0
10
1
.
22
10
16
2
1
C
3
3
5
=
π
=
pF
12
10
1
.
22
10
600
2
1
C
3
3
8
=
π
=


π
=
O
FB
O
C
S
CA
C
V
V
C
F
2
1
R
G
1
log
20
A
dB
9
.
15
3
.
3
0
.
1
10
22
10
80
2
1
10
1
.
6
28
1
log
20
A
6
3
3
C
=
π
=
m
7
g
10
R
20
C
A
=
CESAT
D
IN
D
O
V
V
V
V
V
D
+
+
=
=
1
V
0
.
1
V
R
R
O
6
4
1
SW
D
O
L
L
F
)
D
1
(
)
V
V
(
I
+
=
D
)
D
1
(
D
I
I
O
CIN
_
RMS
=


+
D
=
D
O
SW
L
O
C
F
8
1
ESR
I
V
SW
IN
O
IN
F
V
4
I
C
D
>
,
R
G
R
G
S
CA
PWM
)
/
s
Q
/
s
1
()
/
s
1
(
)
C
R
s
1
(
G
V
V
2
n
2
n
p
O
ESR
PWM
c
o
ω
+
ω
+
ω
+
+
=
7
1
Z
5
R
F
2
1
C
π
=
7
1
P
8
R
F
2
1
C
π
=
,
C
R
1
O
p
ω
,
C
R
1
O
ESR
Z =
ω
k
3
.
22
10
28
.
0
10
R
3
7
20
9
.
15
=
=
nF
45
.
0
10
1
.
22
10
16
2
1
C
3
3
5
=
π
=
pF
12
10
1
.
22
10
600
2
1
C
3
3
8
=
π
=


π
=
O
FB
O
C
S
CA
C
V
V
C
F
2
1
R
G
1
log
20
A
dB
9
.
15
3
.
3
0
.
1
10
22
10
80
2
1
10
1
.
6
28
1
log
20
A
6
3
3
C
=
π
=
m
7
g
10
R
20
C
A
=
SW
O
D
O
1
F
I
%
35
)
D
1
(
)
V
V
(
L
+
=
CESAT
D
IN
D
O
V
V
V
V
V
D
+
+
=
=
1
V
0
.
1
V
R
R
O
6
4
1
SW
D
O
L
L
F
)
D
1
(
)
V
V
(
I
+
=
D
)
D
1
(
D
I
I
O
CIN
_
RMS
=


+
D
=
D
O
SW
L
O
C
F
8
1
ESR
I
V
SW
IN
O
IN
F
V
4
I
C
D
>
,
R
G
R
G
S
CA
PWM
)
/
s
Q
/
s
1
()
/
s
1
(
)
C
R
s
1
(
G
V
V
2
n
2
n
p
O
ESR
PWM
c
o
ω
+
ω
+
ω
+
+
=
7
1
Z
5
R
F
2
1
C
π
=
7
1
P
8
R
F
2
1
C
π
=
,
C
R
1
O
p
ω
,
C
R
1
O
ESR
Z =
ω
k
3
.
22
10
28
.
0
10
R
3
7
20
9
.
15
=
=
nF
45
.
0
10
1
.
22
10
16
2
1
C
3
3
5
=
π
=
pF
12
10
1
.
22
10
600
2
1
C
3
3
8
=
π
=


π
=
O
FB
O
C
S
CA
C
V
V
C
F
2
1
R
G
1
log
20
A
dB
9
.
15
3
.
3
0
.
1
10
22
10
80
2
1
10
1
.
6
28
1
log
20
A
6
3
3
C
=
π
=
m
7
g
10
R
20
C
A
=
SW
O
D
O
1
F
I
%
35
)
D
1
(
)
V
V
(
L
+
=
CESAT
D
IN
D
O
V
V
V
V
V
D
+
+
=
=
1
V
0
.
1
V
R
R
O
6
4
1
SW
D
O
L
L
F
)
D
1
(
)
V
V
(
I
+
=
D
SW
O
D
O
1
F
I
%
20
)
D
1
(
)
V
V
(
L
+
=
)
D
1
(
D
I
I
O
CIN
_
RMS
=


+
D
=
D
O
SW
L
O
C
F
8
1
ESR
I
V
SW
IN
O
IN
F
V
4
I
C
D
>
,
R
G
R
G
S
CA
PWM
)
/
s
Q
/
s
1
()
/
s
1
(
)
C
R
s
1
(
G
V
V
2
n
2
n
p
O
ESR
PWM
c
o
ω
+
ω
+
ω
+
+
=
7
1
Z
5
R
F
2
1
C
π
=
7
1
P
8
R
F
2
1
C
π
=
,
C
R
1
O
p
ω
,
C
R
1
O
ESR
Z =
ω
k
3
.
22
10
28
.
0
10
R
3
7
20
9
.
15
=
=
nF
45
.
0
10
1
.
22
10
16
2
1
C
3
3
5
=
π
=
pF
12
10
1
.
22
10
600
2
1
C
3
3
8
=
π
=


π
=
O
FB
O
C
S
CA
C
V
V
C
F
2
1
R
G
1
log
20
A
dB
9
.
15
3
.
3
0
.
1
10
22
10
80
2
1
10
1
.
6
28
1
log
20
A
6
3
3
C
=
π
=
m
7
g
10
R
20
C
A
=
CESAT
D
IN
D
O
V
V
V
V
V
D
+
+
=
=
1
V
0
.
1
V
R
R
O
6
4
1
SW
D
O
L
L
F
)
D
1
(
)
V
V
(
I
+
=
D
SW
O
D
O
1
F
I
%
20
)
D
1
(
)
V
V
(
L
+
=
)
D
1
(
D
I
I
O
CIN
_
RMS
=


+
D
=
D
O
SW
L
O
C
F
8
1
ESR
I
V
SW
IN
O
IN
F
V
4
I
C
D
>
,
R
G
R
G
S
CA
PWM
)
/
s
Q
/
s
1
()
/
s
1
(
)
C
R
s
1
(
G
V
V
2
n
2
n
p
O
ESR
PWM
c
o
ω
+
ω
+
ω
+
+
=
7
1
Z
5
R
F
2
1
C
π
=
7
1
P
8
R
F
2
1
C
π
=
,
C
R
1
O
p
ω
,
C
R
1
O
ESR
Z =
ω
k
3
.
22
10
28
.
0
10
R
3
7
20
9
.
15
=
=
nF
45
.
0
10
1
.
22
10
16
2
1
C
3
3
5
=
π
=
pF
12
10
1
.
22
10
600
2
1
C
3
3
8
=
π
=


π
=
O
FB
O
C
S
CA
C
V
V
C
F
2
1
R
G
1
log
20
A
dB
9
.
15
3
.
3
0
.
1
10
22
10
80
2
1
10
1
.
6
28
1
log
20
A
6
3
3
C
=
π
=
m
7
g
10
R
20
C
A
=
CESAT
D
IN
D
O
V
V
V
V
V
D
+
+
=
=
1
V
0
.
1
V
R
R
O
6
4
1
SW
D
O
L
L
F
)
D
1
(
)
V
V
(
I
+
=
D
SW
O
D
O
1
F
I
%
20
)
D
1
(
)
V
V
(
L
+
=
)
D
1
(
D
I
I
O
CIN
_
RMS
=


+
D
=
D
O
SW
L
O
C
F
8
1
ESR
I
V
SW
IN
O
IN
F
V
4
I
C
D
>
,
R
G
R
G
S
CA
PWM
)
/
s
Q
/
s
1
()
/
s
1
(
)
C
R
s
1
(
G
V
V
2
n
2
n
p
O
ESR
PWM
c
o
ω
+
ω
+
ω
+
+
=
7
1
Z
5
R
F
2
1
C
π
=
7
1
P
8
R
F
2
1
C
π
=
,
C
R
1
O
p
ω
,
C
R
1
O
ESR
Z =
ω
k
3
.
22
10
28
.
0
10
R
3
7
20
9
.
15
=
=
nF
45
.
0
10
1
.
22
10
16
2
1
C
3
3
5
=
π
=
pF
12
10
1
.
22
10
600
2
1
C
3
3
8
=
π
=


π
=
O
FB
O
C
S
CA
C
V
V
C
F
2
1
R
G
1
log
20
A
dB
9
.
15
3
.
3
0
.
1
10
22
10
80
2
1
10
1
.
6
28
1
log
20
A
6
3
3
C
=
π
=
m
7
g
10
R
20
C
A
=
CESAT
D
IN
D
O
V
V
V
V
V
D
+
+
=
=
1
V
0
.
1
V
R
R
O
6
4
1
SW
D
O
L
L
F
)
D
1
(
)
V
V
(
I
+
=
D
SW
O
D
O
1
F
I
%
20
)
D
1
(
)
V
V
(
L
+
=
)
D
1
(
D
I
I
O
CIN
_
RMS
=


+
D
=
D
O
SW
L
O
C
F
8
1
ESR
I
V
SW
IN
O
IN
F
V
4
I
C
D
>
,
R
G
R
G
S
CA
PWM
)
/
s
Q
/
s
1
()
/
s
1
(
)
C
R
s
1
(
G
V
V
2
n
2
n
p
O
ESR
PWM
c
o
ω
+
ω
+
ω
+
+
=
7
1
Z
5
R
F
2
1
C
π
=
7
1
P
8
R
F
2
1
C
π
=
,
C
R
1
O
p
ω
,
C
R
1
O
ESR
Z =
ω
k
3
.
22
10
28
.
0
10
R
3
7
20
9
.
15
=
=
nF
45
.
0
10
1
.
22
10
16
2
1
C
3
3
5
=
π
=
pF
12
10
1
.
22
10
600
2
1
C
3
3
8
=
π
=


π
=
O
FB
O
C
S
CA
C
V
V
C
F
2
1
R
G
1
log
20
A
dB
9
.
15
3
.
3
0
.
1
10
22
10
80
2
1
10
1
.
6
28
1
log
20
A
6
3
3
C
=
π
=
m
7
g
10
R
20
C
A
=
where DV
IN is the allowable input ripple voltage.
Multi-layer ceramic capacitors, which have very low ESR (a
few mW) and can easily handle high RMS ripple current, are
the ideal choice for input filtering. A single 4.7µF to 10µF
X5R ceramic capacitor is adequate for most applications.
For high voltage applications, a small ceramic (1µF or
2.2µF) can be placed in parallel with a low ESR electrolytic
capacitor to satisfy both the ESR and bulk capacitance
requirements.
Output Capacitor
The output ripple voltage DV
O of a buck converter can be
expressed as
(7)
where C
O is the output capacitance.
Since the inductor ripple current DI
L increases as D
decreases (Equation (3)), the output ripple voltage is
therefore the highest when V
IN is at its maximum.
A 22µF to 47µF X5R ceramic capacitor is found adequate
for output filtering in most applications. Ripple current
in the output capacitor is not a concern because the
inductor current of a buck converter directly feeds C
O,
resulting in very low ripple current. Avoid using Z5U
and Y5V ceramic capacitors for output filtering because
these types of capacitors have high temperature and high
voltage coefficients.
Freewheeling Diode
Use of Schottky barrier diodes as freewheeling rectifiers
reduces diode reverse recovery input current spikes,
easing high-side current sensing in the SC4525D. These
diodes should have an average forward current rating
at least 3A and a reverse blocking voltage of at least a
few volts higher than the input voltage. For switching
regulators operating at low duty cycles (i.e. low output
voltage to input voltage conversion ratios), it is beneficial
to use freewheeling diodes with somewhat higher
average current ratings (thus lower forward voltages). This
CESAT
D
IN
D
O
V
V
V
V
V
D
+
+
=
=
1
V
0
.
1
V
R
R
O
6
4
1
SW
D
O
L
L
F
)
D
1
(
)
V
V
(
I
+
=
D
SW
O
D
O
1
F
I
%
20
)
D
1
(
)
V
V
(
L
+
=
)
D
1
(
D
I
I
O
CIN
_
RMS
=


+
D
=
D
O
SW
L
O
C
F
8
1
ESR
I
V
SW
IN
O
IN
F
V
4
I
C
D
>
,
R
G
R
G
S
CA
PWM
)
/
s
Q
/
s
1
()
/
s
1
(
)
C
R
s
1
(
G
V
V
2
n
2
n
p
O
ESR
PWM
c
o
ω
+
ω
+
ω
+
+
=
7
1
Z
5
R
F
2
1
C
π
=
7
1
P
8
R
F
2
1
C
π
=
,
C
R
1
O
p
ω
,
C
R
1
O
ESR
Z =
ω
k
3
.
22
10
28
.
0
10
R
3
7
20
9
.
15
=
=
nF
45
.
0
10
1
.
22
10
16
2
1
C
3
3
5
=
π
=
pF
12
10
1
.
22
10
600
2
1
C
3
3
8
=
π
=


π
=
O
FB
O
C
S
CA
C
V
V
C
F
2
1
R
G
1
log
20
A
dB
9
.
15
3
.
3
0
.
1
10
22
10
80
2
1
10
1
.
6
28
1
log
20
A
6
3
3
C
=
π
=
m
7
g
10
R
20
C
A
=
CESAT
D
IN
D
O
V
V
V
V
V
D
+
+
=
=
1
V
0
.
1
V
R
R
O
6
4
1
SW
D
O
L
L
F
)
D
1
(
)
V
V
(
I
+
=
D
SW
O
D
O
1
F
I
%
20
)
D
1
(
)
V
V
(
L
+
=
)
D
1
(
D
I
I
O
CIN
_
RMS
=


+
D
=
D
O
SW
L
O
C
F
8
1
ESR
I
V
SW
IN
O
IN
F
V
4
I
C
D
>
,
R
G
R
G
S
CA
PWM
)
/
s
Q
/
s
1
()
/
s
1
(
)
C
R
s
1
(
G
V
V
2
n
2
n
p
O
ESR
PWM
c
o
ω
+
ω
+
ω
+
+
=
7
1
Z
5
R
F
2
1
C
π
=
7
1
P
8
R
F
2
1
C
π
=
,
C
R
1
O
p
ω
,
C
R
1
O
ESR
Z =
ω
k
3
.
22
10
28
.
0
10
R
3
7
20
9
.
15
=
=
nF
45
.
0
10
1
.
22
10
16
2
1
C
3
3
5
=
π
=
pF
12
10
1
.
22
10
600
2
1
C
3
3
8
=
π
=


π
=
O
FB
O
C
S
CA
C
V
V
C
F
2
1
R
G
1
log
20
A
dB
9
.
15
3
.
3
0
.
1
10
22
10
80
2
1
10
1
.
6
28
1
log
20
A
6
3
3
C
=
π
=
m
7
g
10
R
20
C
A
=


Similar Part No. - SC4525DEVB

ManufacturerPart #DatasheetDescription
logo
Semtech Corporation
SC4525A SEMTECH-SC4525A Datasheet
780Kb / 19P
   28V 3A Step-Down Switching Regulator
SC4525AEVB SEMTECH-SC4525AEVB Datasheet
780Kb / 19P
   28V 3A Step-Down Switching Regulator
SC4525ASETRT SEMTECH-SC4525ASETRT Datasheet
780Kb / 19P
   28V 3A Step-Down Switching Regulator
SC4525C SEMTECH-SC4525C Datasheet
742Kb / 21P
   28V 3A Step-Down Switching Regulator Thermal Shutdown
SC4525E SEMTECH-SC4525E Datasheet
941Kb / 23P
   28V 3A Step-Down Switching Regulator
More results

Similar Description - SC4525DEVB

ManufacturerPart #DatasheetDescription
logo
Semtech Corporation
SC4525F SEMTECH-SC4525F Datasheet
1,000Kb / 23P
   18V, 3A, 350kHz Step-Down Switching Regulator
logo
Shenzhen Huazhimei Semi...
HM8113 HMSEMI-HM8113 Datasheet
1Mb / 7P
   18V 3A 500KHz Synchronous Step-Down Regulator
HM1484E HMSEMI-HM1484E Datasheet
1Mb / 7P
   18V 3A 500KHz Synchronous Step-Down Regulator
logo
Semtech Corporation
SC4524F SEMTECH-SC4524F Datasheet
998Kb / 23P
   18V 2A Step-Down Switching Regulator
SC4524B SEMTECH-SC4524B_08 Datasheet
756Kb / 18P
   18V 2A Step-Down Switching Regulator
logo
Exar Corporation
XRP7675 EXAR-XRP7675 Datasheet
784Kb / 12P
   3A 18V Synchronous PFM/PWM Step-Down Regulator
logo
Semtech Corporation
SC4519 SEMTECH-SC4519 Datasheet
278Kb / 15P
   600kHz, 3A Step-Down Switching Regulator
logo
Taiwan Semiconductor Co...
TS2576 TSC-TS2576 Datasheet
141Kb / 7P
   3A Step Down Switching Voltage Regulator
logo
Semtech Corporation
SC4519H SEMTECH-SC4519H_07 Datasheet
285Kb / 14P
   600kHz, 3A Step-Down Switching Regulator
SC4525EM SEMTECH-SC4525EM Datasheet
1Mb / 23P
   28V 3A Step-Down Switching Regulator
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.NET
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com