Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.NET

X  

AD600A Datasheet(PDF) 5 Page - Analog Devices

Part # AD600A
Description  Dual, Low Noise, Wideband Variable Gain Amplifiers
Download  20 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  AD [Analog Devices]
Direct Link  http://www.analog.com
Logo AD - Analog Devices

AD600A Datasheet(HTML) 5 Page - Analog Devices

  AD600A Datasheet HTML 1Page - Analog Devices AD600A Datasheet HTML 2Page - Analog Devices AD600A Datasheet HTML 3Page - Analog Devices AD600A Datasheet HTML 4Page - Analog Devices AD600A Datasheet HTML 5Page - Analog Devices AD600A Datasheet HTML 6Page - Analog Devices AD600A Datasheet HTML 7Page - Analog Devices AD600A Datasheet HTML 8Page - Analog Devices AD600A Datasheet HTML 9Page - Analog Devices Next Button
Zoom Inzoom in Zoom Outzoom out
 5 / 20 page
background image
AD600/AD602
REV. A
–5–
The Gain-Control Interface
The attenuation is controlled through a differential, high imped-
ance (15 M
Ω) input, with a scaling factor which is laser
trimmed to 32 dB per volt, that is, 31.25 mV/dB. Each of the
two amplifiers has its own control interface. An internal band-
gap reference ensures stability of the scaling with respect to
supply and temperature variations, and is the only circuitry
common to both channels.
When the differential input voltage VG = 0 V, the attenuator
“slider” is centered, providing an attenuation of 21.07 dB, thus
resulting in an overall gain of 20 dB (= –21.07 dB + 41.07 dB).
When the control input is –625 mV, the gain is lowered by
20 dB (= 0.625
× 32), to 0 dB; when set to +625 mV, the gain
is increased by 20 dB, to 40 dB. When this interface is over-
driven in either direction, the gain approaches either –1.07 dB
(= –42.14 dB + 41.07 dB) or 41.07 dB (= 0 + 41.07 dB),
respectively.
The gain of the AD600 can thus be calculated using the follow-
ing simple expression:
Gain (dB) = 32 VG + 20
(1)
where VG is in volts. For the AD602, the expression is:
Gain (dB) = 32 VG + 10
(2)
Operation is specified for VG in the range from –625 mV dc to
+625 mV dc. The high impedance gain-control input ensures
minimal loading when driving many amplifiers in multiple-
channel applications. The differential input configuration pro-
vides flexibility in choosing the appropriate signal levels and
polarities for various control schemes.
For example, the gain-control input can be fed differentially to
the inputs, or single-ended by simply grounding the unused in-
put. In another example, if the gain is to be controlled by a
DAC providing a positive only ground referenced output, the
“Gain Control LO” pin (either C1LO or C2LO) should be bi-
ased to a fixed offset of +625 mV, to set the gain to 0 dB when
“Gain Control HI” (C1HI or C2HI) is at zero, and to 40 dB
when at +1.25 V.
It is a simple matter to include a voltage divider to achieve other
scaling factors. When using an 8-bit DAC having a FS output of
+2.55 V (10 mV/bit) a divider ratio of 1.6 (generating 6.25 mV/
bit) would result in a gain setting resolution of 0.2 dB/ bit.
Later, we will discuss how the two sections of an AD600 or
AD602 may be cascaded, when various options exist for gain
control.
Signal-Gating Inputs
Each amplifier section of the AD600 and AD602 is equipped
with a signal gating function, controlled by a TTL or CMOS
logic input (GAT1 or GAT2). The ground references for these
inputs are the signal input grounds A1LO and A2LO, respec-
tively. Operation of the channel is unaffected when this input is
LO or left open-circuited. Signal transmission is blocked when
this input is HI. The dc output level of the channel is set to
within a few millivolts of the output ground (A1CM or A2CM),
and simultaneously the noise level drops significantly. The
reduction in noise and spurious signal feedthrough is useful in
ultrasound beam-forming applications, where many amplifier
outputs are summed.
Common-Mode Rejection
A special circuit technique is used to provide rejection of volt-
ages appearing between input grounds (A1LO and A2LO) and
output grounds (A1CM and A2CM). This is necessary because
of the “op amp” form of the amplifier, as shown in Figure 1.
The feedback voltage is developed across the resistor RF1
(which, to achieve low noise, has a value of only 20
Ω). The
voltage developed across this resistor is referenced to the input
common, so the output voltage is also referred to that node.
To provide rejection of this common voltage, an auxiliary ampli-
fier (not shown) is included, which senses the voltage difference
between input and output commons and cancels this error
component. Thus, for zero differential signal input between
A1HI and A1LO, the output A1OP simply follows the voltage at
A1CM. Note that the range of voltage differences which can ex-
ist between A1LO and A1CM (or A2LO and A2CM) is limited
to about
±100 mV. Figure 50 (one of the typical performance
curves at the end of this data sheet) shows typical common-
mode rejection ratio versus frequency.
ACHIEVING 80 dB GAIN RANGE
The two amplifier sections of the X-AMP can be connected in
series to achieve higher gain. In this mode, the output of A1
(A1OP and A1CM) drives the input of A2 via a high-pass
network (usually just a capacitor) that rejects the dc offset. The
nominal gain range is now –2 dB to +82 dB for the AD600 or
–22 dB to +62 dB for the AD602.
There are several options in connecting the gain-control inputs.
The choice depends on the desired signal-to-noise ratio (SNR)
and gain error (output ripple). The following examples feature
the AD600; the arguments generally apply to the AD602, with
appropriate changes to the gain values.
Sequential Mode (Maximum S/N Ratio)
In the sequential mode of operation, the SNR is maintained at
its highest level for as much of the gain control range possible,
as shown in Figure 2. Note here that the gain range is 0 dB to
80 dB. Figure 3 shows the general connections to accomplish
this. Both gain-control inputs, C1HI and C2HI, are driven in
parallel by a positive only, ground referenced source with a
range of 0 V to +2.5 V.
VG
85
30
3.0
45
35
0.0
40
–0.5
60
50
55
65
70
75
80
2.5
2.0
1.5
1.0
0.5
Figure 2. S/N Ratio vs. Control Voltage Sequential Control
(1 MHz Bandwidth)


Similar Part No. - AD600A

ManufacturerPart #DatasheetDescription
logo
Analog Devices
AD600AQ AD-AD600AQ Datasheet
588Kb / 28P
   Dual, Low Noise, Wideband Variable Gain Amplifiers
Rev. E
AD600AR AD-AD600AR Datasheet
588Kb / 28P
   Dual, Low Noise, Wideband Variable Gain Amplifiers
Rev. E
AD600AR-REEL AD-AD600AR-REEL Datasheet
588Kb / 28P
   Dual, Low Noise, Wideband Variable Gain Amplifiers
Rev. E
AD600AR-REEL7 AD-AD600AR-REEL7 Datasheet
588Kb / 28P
   Dual, Low Noise, Wideband Variable Gain Amplifiers
Rev. E
AD600ARZ-R7 AD-AD600ARZ-R7 Datasheet
588Kb / 28P
   Dual, Low Noise, Wideband Variable Gain Amplifiers
Rev. E
More results

Similar Description - AD600A

ManufacturerPart #DatasheetDescription
logo
Analog Devices
AD602 AD-AD602_15 Datasheet
677Kb / 33P
   Dual, Low Noise, Wideband Variable Gain Amplifiers
Rev. F
AD600 AD-AD600_06 Datasheet
588Kb / 28P
   Dual, Low Noise, Wideband Variable Gain Amplifiers
Rev. E
AD600 AD-AD600_15 Datasheet
677Kb / 33P
   Dual, Low Noise, Wideband Variable Gain Amplifiers
Rev. F
AD8366 AD-AD8366_17 Datasheet
1Mb / 28P
   Dual-Digital Variable Gain Amplifiers
logo
National Semiconductor ...
LMH6622 NSC-LMH6622 Datasheet
540Kb / 18P
   Dual Wideband, Low Noise, 160MHz, Operational Amplifiers
logo
Texas Instruments
LMH6504 TI1-LMH6504_14 Datasheet
1Mb / 29P
[Old version datasheet]   Wideband, Low Power, Variable Gain Amplifier
logo
National Semiconductor ...
LMH6504 NSC-LMH6504 Datasheet
759Kb / 19P
   Wideband, Low Power, Variable Gain Amplifier
logo
Analog Devices
ADRF6510 AD-ADRF6510_17 Datasheet
1Mb / 32P
   Dual Programmable Filters Variable Gain Amplifiers
logo
DAICO Industries, Inc.
DAML6273 DAICO-DAML6273 Datasheet
176Kb / 1P
   Variable Gain Low Noise Amplifier
DAML6275 DAICO-DAML6275 Datasheet
157Kb / 1P
   Variable Gain Low Noise Amplifier
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.NET
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com