Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.NET

X  

AD641AN Datasheet(PDF) 11 Page - Analog Devices

Part # AD641AN
Description  250 MHz Demodulating Logarithmic Amplifier
Download  16 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  AD [Analog Devices]
Direct Link  http://www.analog.com
Logo AD - Analog Devices

AD641AN Datasheet(HTML) 11 Page - Analog Devices

Back Button AD641AN Datasheet HTML 7Page - Analog Devices AD641AN Datasheet HTML 8Page - Analog Devices AD641AN Datasheet HTML 9Page - Analog Devices AD641AN Datasheet HTML 10Page - Analog Devices AD641AN Datasheet HTML 11Page - Analog Devices AD641AN Datasheet HTML 12Page - Analog Devices AD641AN Datasheet HTML 13Page - Analog Devices AD641AN Datasheet HTML 14Page - Analog Devices AD641AN Datasheet HTML 15Page - Analog Devices Next Button
Zoom Inzoom in Zoom Outzoom out
 11 / 16 page
background image
REV. C
AD641
–11–
Unused pins (excluding Pins 8, 10 and 11) such as the attenua-
tor and applications resistors should be grounded close to the
package edge. BL1 (Pin 6) and BL2 (Pin 9) are internal bias
lines a volt or two above the –VS node; access is provided solely
for the addition of decoupling capacitors, which should be con-
nected exactly as shown (not all of them connect to the ground).
Use low impedance ceramic 0.1
µF capacitors (for example,
Erie RPE113-Z5U-105-K50V). Ferrite beads may be used
instead of supply decoupling resistors in cases where the supply
voltage is low.
Active Current-to-Voltage Conversion
The compliance at LOG OUT limits the available output volt-
age swing. The output of the AD641 may be converted to a
larger, buffered output voltage by the addition of an operational
amplifier connected as a current-to-voltage (transresistance)
stage, as shown in Figure 21. Using a 2 k
Ω feedback resistor
(R2) the 50
µA/dB output at LOG OUT is converted to a volt-
age having a slope of +100 mV/dB, that is, 2 V per decade.
This output ranges from roughly –0.4 V for zero signal inputs
to the AD641, crosses zero at a dc input of precisely +1 mV
(or –1 mV) and is +4 V for a dc input of 100 mV. A passive
prefilter, formed by R1 and C1, minimizes the high frequency
energy conveyed to the op amp. The corner frequency is here
shown as 10 MHz. The AD846 is recommended for this appli-
cation because of its excellent performance in transresistance
modes. Its bandwidth of 35 MHz (with the 2 k
Ω feedback resis-
tor) will exceed the baseband response of the system in most
applications. For lower bandwidth applications other op amps
and multipole active filters may be substituted.
Effect of Frequency on Calibration
The slope and intercept of the AD641 are calibrated during
manufacture using a 2 kHz square wave input. Calibration
depends on the gain of each stage being 10 dB. When the input
frequency is an appreciable fraction of the 350 MHz bandwidth
of the amplifier stages, their gain becomes less precise and the
logarithmic slope and intercept are no longer as calibrated.
Figure 10 shows the averaged output current versus input level
at 50 MHz, 150 MHz, 190 MHz, 210 MHz, and 250 MHz.
Figure 11 shows the absolute error in the response at 200 MHz
and at temperatures of –55
°C, +25°C and +125°C. Figure 12
shows the variation in the slope current, and Figure 13 shows
the variation in the intercept level (sinusoidal input) versus
frequency.
If absolute calibration is essential, or some other value of slope
or intercept is required, there will usually be some point in the
user’s system at which an adjustment may be easily introduced.
For example, the 5% slope deficit at 50 MHz (see Figure 12)
may be restored by a 5% increase in the value of the load resis-
tor in the passive loading scheme shown in Figure 24, or by
inserting a trim potentiometer of 100
Ω in series with the feed-
back resistor in the scheme shown in Figure 21. The intercept
can be adjusted by adding or subtracting a small current to the
output. Since the slope current is 1 mA/decade, a 50
µA incre-
ment will move the intercept by 1 dB. Note that any error in
this current will invalidate the calibration of the AD641. For
example, if one of the 5 V supplies were used with a resistor to
generate the current to reposition the intercept by 20 dB, a
±10% variation in this supply will cause a ±2 dB error in the
absolute calibration. Of course, slope calibration is unaffected.
Source Resistance and Input Offset
The bias currents at the signal inputs (Pins 1 and 20) are typi-
cally 7
µA. These flow in the source resistances and generate
input offset voltages which may limit the dynamic range because
the AD641 is direct coupled and an offset is indistinguishable
from a signal. It is good practice to keep the source resistances
as low as possible and to equalize the resistance seen at each
input. For example, if the source resistance to Pin 20 is 100
Ω, a
compensating resistor of 100
Ω should be placed in series with
Pin 1. The residual offset is then due to the bias current offset,
which is typically under 1
µA, causing an extra offset uncertainty
of 100
µV in this example. For a single AD641 this will rarely be
troublesome, but in some applications it may need to be nulled
out, along with the internal voltage offset component. This may
be achieved by adding an adjustable voltage of up to
±250 µV
at the unused input. (Pins 1 and 20 may be interchanged with
no change in function.)
In most applications there will be no need to use any offset
adjustment. However, a general offset trimming circuit is shown
in Figure 25. RS is the source resistance of the signal. Note: 50 Ω
rf sources may include a blocking capacitor and have no dc path to
ground, or may be transformer coupled and have a near zero resis-
tance to ground. Determine whether the source resistance is zero,
25
Ω or 50 Ω (with the generator terminated in 50 Ω) to find
the correct value of bias compensating resistor, RB, which
should optimally be equal to RS, unless RS = 0, in which case
use RB = 5 Ω. The value of ROS should be set to 20,000 RB to
provide a
±250 µV trim range. To null the offset, set the source
voltage to zero and use a DVM to observe the logarithmic out-
put voltage. Recall that the LOG OUT current of the AD641
exhibits an absolute value response to the input voltage, so the
offset potentiometer is adjusted to the point where the logarithmic
output “turns around” (reaches a local maximum or minimum).
At high frequencies it may be desirable to insert a coupling
capacitor and use a choke between Pin 20 and ground, when
Pin 1 should be taken directly to ground. Alternatively, trans-
former coupling may be used. In these cases, there is no added
offset due to bias currents. When using two dc-coupled AD641s
(overall gain 100,000), it is impractical to maintain a sufficiently
low offset voltage using a manual nulling scheme. The section
CASCADED OPERATION explains how the offset can be
automatically nulled to submicrovolt levels by the use of a nega-
tive feedback network.
–5V
(SOURCE
RESISTANCE
OF
TERMINATED
GENERATOR)
RB
2
19
1
20
ROS
RS
+5V
20k
AD641
Figure 25. Optional Input Offset Voltage Nulling Circuit;
See Text for Component Values


Similar Part No. - AD641AN

ManufacturerPart #DatasheetDescription
logo
Analog Devices
AD641ANZ AD-AD641ANZ Datasheet
320Kb / 17P
   250 MHz Demodulating Logarithmic Amplifier
More results

Similar Description - AD641AN

ManufacturerPart #DatasheetDescription
logo
Analog Devices
AD641 AD-AD641_15 Datasheet
260Kb / 16P
   250 MHz Demodulating Logarithmic Amplifier
REV. C
AD641 AD-AD641_16 Datasheet
320Kb / 17P
   250 MHz Demodulating Logarithmic Amplifier
AD640 AD-AD640 Datasheet
278Kb / 16P
   DC-Coupled Demodulating 120 MHz Logarithmic Amplifier
REV. C
AD640 AD-AD640_15 Datasheet
240Kb / 16P
   DC-Coupled Demodulating 120 MHz Logarithmic Amplifier
REV. C
AD640JPZ AD-AD640JPZ Datasheet
240Kb / 16P
   DC-Coupled Demodulating 120 MHz Logarithmic Amplifier
REV. C
AD640 AD-AD640_16 Datasheet
417Kb / 19P
   DC-Coupled Demodulating 120 MHz Logarithmic Amplifier
AD8309ARUZ AD-AD8309ARUZ Datasheet
315Kb / 20P
   5 MHz??00 MHz 100 dB Demodulating Logarithmic Amplifier
REV. B
AD8309 AD-AD8309 Datasheet
311Kb / 20P
   5 MHz.500 MHz 100 dB Demodulating Logarithmic Amplifier with Limiter Output
REV. B
AD606 AD-AD606 Datasheet
448Kb / 12P
   50 MHz, 80 dB Demodulating Logarithmic Amplifier with Limiter Output
REV. B
AD606 AD-AD606_15 Datasheet
452Kb / 12P
   50 MHz, 80 dB Demodulating Logarithmic Amplifier with Limiter Output
REV. B
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.NET
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com