Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.NET

X  

VCA610P Datasheet(PDF) 10 Page - Burr-Brown (TI)

[Old version datasheet] Texas Instruments acquired Burr-Brown Corporation.
Part # VCA610P
Description  WIDEBAND VOLTAGE CONTROLLED AMPLIFIER
Download  12 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  BURR-BROWN [Burr-Brown (TI)]
Direct Link  http://www.burr-brown.com
Logo BURR-BROWN - Burr-Brown (TI)

VCA610P Datasheet(HTML) 10 Page - Burr-Brown (TI)

Back Button VCA610P Datasheet HTML 4Page - Burr-Brown (TI) VCA610P Datasheet HTML 5Page - Burr-Brown (TI) VCA610P Datasheet HTML 6Page - Burr-Brown (TI) VCA610P Datasheet HTML 7Page - Burr-Brown (TI) VCA610P Datasheet HTML 8Page - Burr-Brown (TI) VCA610P Datasheet HTML 9Page - Burr-Brown (TI) VCA610P Datasheet HTML 10Page - Burr-Brown (TI) VCA610P Datasheet HTML 11Page - Burr-Brown (TI) VCA610P Datasheet HTML 12Page - Burr-Brown (TI)  
Zoom Inzoom in Zoom Outzoom out
 10 / 12 page
background image
®
VCA610
10
STABILIZED WEIN-BRIDGE OSCILLATOR
Adding Wein-bridge feedback to the above AGC amplifier
produces an amplitude-stabilized oscillator. Shown in
Figure 8, this alternative requires the addition of just two
resistors (RW1, RW2) and two capacitors (CW1, CW2).
Connecting the feedback network to the amplifier’s
noninverting input introduces positive feedback to induce
oscillation. The feedback factor displays a frequency depen-
dence due to the changing impedances of the C
W capacitors.
As frequency increases, the decreasing impedance of the
C
W2 increases the feedback factor. Simultaneously, the de-
creasing impedance of the CW1 decreases this factor.
Analysis shows that the maximum factor occurs at f =
1/2
πR
WCW, making this the frequency most conducive to
oscillation. At this frequency the impedance magnitude of
CW equals RW and inspection of the circuit shows that this
condition produces a feedback factor of 1/3. Thus, self-
sustaining oscillation requires a gain of three through the
amplifier. The AGC circuitry establishes this gain level.
Following initial circuit turn on, R1 begins charging CH
negative, increasing the amplifier gain from its minimum.
When this gain reaches three, oscillation begins at f =
1/2
πR
WCW and R1’s continued charging effect makes the
oscillation amplitude grow. This growth continues until that
amplitude reaches a peak value equal to V
R. Then, the AGC
circuit counteracts the R1 effect, controlling the peak ampli-
tude at V
R by holding the amplifier gain at a level of three.
Making VR an AC signal, rather than a DC reference,
produces amplitude modulation of the oscillator output.
LOW-DRIFT WIDEBAND LOG AMP
The VCA610 can be used to provide a 250kHz (–3dB) log
amp with low offset voltage and low gain drift.
The exponential gain control characteristic of the VCA610
permits simple generation of a temperature-compensated
logarithmic response. Enclosing the exponential function in
an op amp feedback path inverts this function, producing the
log response. Figure 9 shows the practical implementation
of this technique. A DC reference voltage, VR, sets the
VCA610 inverting input voltage. This makes the amplifier’s
output voltage VOA = – GVR where G = 10 -2 (Vc + 1).
A second input voltage also influences V
OA through control
of gain G. The feedback op amp forces VOA to equal the
input voltage V
IN connected at the op amp inverting input.
Any difference between these two signals drops across R3,
producing a feedback current that charges C
C. The resulting
change in VOL adjusts the gain of the VCA610 to change
V
OA. At equilibrium, VOA = VIN = –VR10
-2 (Vc +1). The op
amp forces this equality by supplying the gain control
voltage V
C = R1 VOL /(R1 + R2). Combining the last two
expressions and solving for VOL yields the circuit’s logarith-
mic response.
V
OL = – (1 + R2/R1) [1 + 0.5LOG (–VIN /VR)]
Examination of this result illustrates several circuit charac-
teristics. First, the argument of the Log term, –VIN/VR,
reveals an option and a constraint. In Figure 9, VR represents
a DC reference voltage. Optionally, making this voltage a
second signal produces log-ratio operation. Either way, the
Log term’s argument constrains the polarities of VR and VIN.
These two voltages must be of opposite polarities to ensure
a positive argument. This polarity combination results when
VR connects to the inverting input of the VCA610. Alter-
nately, switching VR to this amplifier’s noninverting input
removes the minus sign of the log term’s argument. Then,
both voltages must be of the same polarity to produce a
positive argument. In either case, the positive polarity re-
quirement of the argument restricts VIN to a unipolar range.
The above V
OL expression reflects a circuit gain introduced
by the presence of R1 and R2. This feature adds a convenient
scaling control to the circuit. However, a practical matter
sets a minimum level for this gain. The voltage divider
formed by R
1 and R2 attenuates the voltage supplied to the
VC terminal by the op amp. This attenuation must be great
enough to prevent any possibility of an overload voltage at
the VC terminal. Such an overload saturates the VCA610’s
gain control circuitry, reducing the amplifier’s gain. For the
feedback connection of Figure 9, this overload condition
permits a circuit latch. To prevent this, choose R
1 and R2 to
ensure that the op amp can not possibly deliver more than
2.5V to the V
C terminal.
FIGURE 9. Driving the Gain Control Pin of the VCA610 with
a Feedback Amplifier Produces a Temperature-
Compensated Log Response.
R
1
470
VCA610
R
2
330
V
OL
V
R
–10mV
OPA620
V
IN
V
OA = –G VR
C
C
50pF
R
3
100
V
OL = – 1 +
1 + 0.5 Log (–V
IN/VR)
R
1
R
2
(
)
V
C
LOW-DRIFT WIDEBAND EXPONENTIAL AMP
A common use of the Log amp above involves signal
companding. The inverse function, signal expanding, re-
quires an exponential transfer function. The VCA610 pro-
duces this latter response directly as shown in Figure 10. DC
reference VR again sets the amplifier’s input voltage and the
input signal VIN now drives the gain control point. Resistors
R1 and R2 attenuate this drive to prevent overloading the
gain control input. Setting these resistors at the same values
as in the preceding Log amp produces an exponential ampli-
fier with the inverse function of the Log amp.


Similar Part No. - VCA610P

ManufacturerPart #DatasheetDescription
logo
Texas Instruments
VCA610 TI1-VCA610 Datasheet
244Kb / 14P
[Old version datasheet]   WIDEBAND VOLTAGE CONTROLLED AMPLIFIER
VCA610UA/2K5 TI1-VCA610UA/2K5 Datasheet
244Kb / 14P
[Old version datasheet]   WIDEBAND VOLTAGE CONTROLLED AMPLIFIER
VCA610 TI1-VCA610_08 Datasheet
244Kb / 14P
[Old version datasheet]   WIDEBAND VOLTAGE CONTROLLED AMPLIFIER
More results

Similar Description - VCA610P

ManufacturerPart #DatasheetDescription
logo
Texas Instruments
VCA610 TI1-VCA610_08 Datasheet
244Kb / 14P
[Old version datasheet]   WIDEBAND VOLTAGE CONTROLLED AMPLIFIER
logo
Burr-Brown (TI)
VCA810 BURR-BROWN-VCA810 Datasheet
417Kb / 25P
   High Gain Adjust Range, Wideband, Voltage-Controlled Amplifier
logo
RF Micro Devices
VCO790-915KY RFMD-VCO790-915KY Datasheet
295Kb / 3P
   5V WIDEBAND VOLTAGE CONTROLLED
UMS-3000-R16-G RFMD-UMS-3000-R16-G Datasheet
260Kb / 3P
   WIDEBAND VOLTAGE CONTROLLED OSCILLATOR
UMS-2400-A16-G RFMD-UMS-2400-A16-G Datasheet
262Kb / 3P
   WIDEBAND VOLTAGE CONTROLLED OSCILLATOR
VCO790-1550TY RFMD-VCO790-1550TY Datasheet
279Kb / 3P
   5V WIDEBAND VOLTAGE CONTROLLED
VCO793-750TY RFMD-VCO793-750TY Datasheet
279Kb / 3P
   12V WIDEBAND VOLTAGE CONTROLLED
VCO790-2300TY RFMD-VCO790-2300TY Datasheet
280Kb / 3P
   5V WIDEBAND VOLTAGE CONTROLLED
VCO790-2560KY RFMD-VCO790-2560KY Datasheet
296Kb / 3P
   5V WIDEBAND VOLTAGE CONTROLLED
VCO790-2965KY RFMD-VCO790-2965KY Datasheet
296Kb / 3P
   5V WIDEBAND VOLTAGE CONTROLLED
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.NET
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com