Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.NET

X  

NB100LVEP222 Datasheet(PDF) 10 Page - ON Semiconductor

Part # NB100LVEP222
Description  Differential ECL/PECL Clock Driver
Download  13 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  ONSEMI [ON Semiconductor]
Direct Link  http://www.onsemi.com
Logo ONSEMI - ON Semiconductor

NB100LVEP222 Datasheet(HTML) 10 Page - ON Semiconductor

Back Button NB100LVEP222_15 Datasheet HTML 5Page - ON Semiconductor NB100LVEP222_15 Datasheet HTML 6Page - ON Semiconductor NB100LVEP222_15 Datasheet HTML 7Page - ON Semiconductor NB100LVEP222_15 Datasheet HTML 8Page - ON Semiconductor NB100LVEP222_15 Datasheet HTML 9Page - ON Semiconductor NB100LVEP222_15 Datasheet HTML 10Page - ON Semiconductor NB100LVEP222_15 Datasheet HTML 11Page - ON Semiconductor NB100LVEP222_15 Datasheet HTML 12Page - ON Semiconductor NB100LVEP222_15 Datasheet HTML 13Page - ON Semiconductor  
Zoom Inzoom in Zoom Outzoom out
 10 / 13 page
background image
NB100LVEP222
www.onsemi.com
10
APPLICATIONS INFORMATION
Using the thermally enhanced package of the
NB100LVEP222
The NB100LVEP222 uses a thermally enhanced 52−lead
LQFP package. The package is molded so that a portion of
the leadframe is exposed at the surface of the package
bottom side. This exposed metal pad will provide the low
thermal impedance that supports the power consumption of
the NB100LVEP222 high−speed bipolar integrated circuit
and will ease the power management task for the system
design. In multilayer board designs, a thermal land pattern
on the printed circuit board and thermal vias are
recommended to maximize both the removal of heat from
the
package
and
electrical
performance
of
the
NB100LVEP222. The size of the land pattern can be larger,
smaller, or even take on a different shape than the exposed
pad on the package. However, the solderable area should be
at least the same size and shape as the exposed pad on the
package. Direct soldering of the exposed pad to the thermal
land will provide an efficient thermal conduit. The thermal
vias will connect the exposed pad of the package to internal
copper planes of the board. The number of vias, spacing, via
diameters and land pattern design depend on the application
and the amount of heat to be removed from the package.
Maximum thermal and electrical performance is achieved
when an array of vias is incorporated in the land pattern.
The
recommended
thermal
land
design
for
NB100LVEP222 applications on multi−layer boards
comprises a 4 X 4 thermal via array using a 1.2 mm pitch as
shown in Figure 7 providing an efficient heat removal path.
Figure 7. Recommended Thermal Land Pattern
All Units mm
Thermal Via Array (4 X 4)
1.2 mm Pitch
0.3 mm Diameter
Exposed Pad
Land Pattern
4.6
4.6
The via diameter should be approximately 0.3 mm with
1 oz. copper via barrel plating. Solder wicking inside the via
may result in voiding during the solder process and must be
avoided. If the copper plating does not plug the vias, stencil
print solder paste onto the printed circuit pad. This will
supply enough solder paste to fill those vias and not starve
the solder joints. The attachment process for the exposed pad
package is equivalent to standard surface mount packages.
Figure 8, “Recommended solder mask openings”, shows a
recommended solder mask opening with respect to a 4 X 4
thermal via array. Because a large solder mask opening may
result in a poor rework release, the opening should be
subdivided as shown in Figure 8. For the nominal package
standoff of 0.1 mm, a stencil thickness of 5 to 8 mils should
be considered.
Figure 8. Recommended Solder Mask Openings
All Units mm
Thermal Via Array (4 X 4)
1.2 mm Pitch
0.3 mm Diameter
Exposed Pad
Land Pattern
4.6
4.6
0.2
1.0
1.0
0.2
Proper thermal management is critical for reliable system
operation. This is especially true for high−fanout and high
output drive capability products.
For thermal system analysis and junction temperature
calculation the thermal resistance parameters of the package
is provided:
Table 9. Thermal Resistance *
lfpm
qJA 5C/W
qJC 5C/W
0
35.6
3.2
100
32.8
4.9
500
30.0
6.4
* Junction to ambient and Junction to board, four−conductor
layer test board (2S2P) per JESD 51−8
These recommendations are to be used as a guideline,
only. It is therefore recommended that users employ
sufficient thermal modeling analysis to assist in applying the
general recommendations to their particular application to
assure adequate thermal performance. The exposed pad of
the NB100LVEP222 package is electrically shorted to the
substrate of the integrated circuit and VEE. The thermal land
should be electrically connected to VEE.


Similar Part No. - NB100LVEP222_15

ManufacturerPart #DatasheetDescription
logo
ON Semiconductor
NB100LVEP222FA ONSEMI-NB100LVEP222FA Datasheet
117Kb / 10P
   2.5 V/3.3 V 1:15 Differential ECL/PECL 첨1/첨2 Clock Driver
October, 2005??Rev. 9
NB100LVEP222FAG ONSEMI-NB100LVEP222FAG Datasheet
117Kb / 10P
   2.5 V/3.3 V 1:15 Differential ECL/PECL 첨1/첨2 Clock Driver
October, 2005??Rev. 9
NB100LVEP222FAR2 ONSEMI-NB100LVEP222FAR2 Datasheet
117Kb / 10P
   2.5 V/3.3 V 1:15 Differential ECL/PECL 첨1/첨2 Clock Driver
October, 2005??Rev. 9
NB100LVEP222FARG ONSEMI-NB100LVEP222FARG Datasheet
117Kb / 10P
   2.5 V/3.3 V 1:15 Differential ECL/PECL 첨1/첨2 Clock Driver
October, 2005??Rev. 9
More results

Similar Description - NB100LVEP222_15

ManufacturerPart #DatasheetDescription
logo
ON Semiconductor
NB100LVEP221 ONSEMI-NB100LVEP221_15 Datasheet
134Kb / 12P
   Differential HSTL/ECL/PECL Clock Driver
April, 2015 ??Rev. 10
logo
Arizona Microtek, Inc
AZ10E111 AZM-AZ10E111 Datasheet
91Kb / 6P
   ECL/PECL 1:9 Differential Clock Driver
logo
List of Unclassifed Man...
AZ100LVE310 ETC1-AZ100LVE310 Datasheet
146Kb / 5P
   ECL/PECL 2:8 Differential Clock Driver
logo
Arizona Microtek, Inc
AZ10LVE111 AZM-AZ10LVE111 Datasheet
84Kb / 6P
   ECL/PECL 1:9 Differential Clock Driver
AZ100LVE310 AZM-AZ100LVE310 Datasheet
71Kb / 5P
   ECL/PECL 2:8 Differential Clock Driver
AZ100LVE210 AZM-AZ100LVE210 Datasheet
71Kb / 5P
   ECL/PECL 1:4, 1:5 Differential Clock Driver
AZ10LVE111E AZM-AZ10LVE111E Datasheet
103Kb / 6P
   ECL/PECL 1:9 Differential Clock Driver with Enable
logo
Motorola, Inc
MC100LVE111 MOTOROLA-MC100LVE111 Datasheet
88Kb / 5P
   LOW-VOLTAGE 1:9 DIFFERENTIAL ECL/PECL CLOCK DRIVER
logo
Semtech Corporation
SK10LVE111 SEMTECH-SK10LVE111 Datasheet
150Kb / 6P
   Low Voltage 1:9 Differential ECL/ PECL Clock Driver
logo
ON Semiconductor
MC100LVE111 ONSEMI-MC100LVE111 Datasheet
64Kb / 8P
   LOW-VOLTAGE 1:9 DIFFERENTIAL ECL/PECL CLOCK DRIVER
April, 2002 ??Rev. 5
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.NET
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com