Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.NET

X  

MIC2594-2BM Datasheet(PDF) 10 Page - Micrel Semiconductor

Part # MIC2594-2BM
Description  Single-Channel, Negative High-Voltage Hot Swap Power Controllers
Download  14 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  MICREL [Micrel Semiconductor]
Direct Link  http://www.micrel.com
Logo MICREL - Micrel Semiconductor

MIC2594-2BM Datasheet(HTML) 10 Page - Micrel Semiconductor

Back Button MIC2594-2BM Datasheet HTML 6Page - Micrel Semiconductor MIC2594-2BM Datasheet HTML 7Page - Micrel Semiconductor MIC2594-2BM Datasheet HTML 8Page - Micrel Semiconductor MIC2594-2BM Datasheet HTML 9Page - Micrel Semiconductor MIC2594-2BM Datasheet HTML 10Page - Micrel Semiconductor MIC2594-2BM Datasheet HTML 11Page - Micrel Semiconductor MIC2594-2BM Datasheet HTML 12Page - Micrel Semiconductor MIC2594-2BM Datasheet HTML 13Page - Micrel Semiconductor MIC2594-2BM Datasheet HTML 14Page - Micrel Semiconductor  
Zoom Inzoom in Zoom Outzoom out
 10 / 14 page
background image
MIC2588/MIC2594
Micrel
M9999-122303
10
December 2003
Functional Description
Hot Swap Insertion
When circuit boards are inserted into systems carrying live
supply voltages (“hot swapped”), high inrush currents often
result due to the charging of bulk capacitance that resides
across the circuit board’s supply pins. These current spikes
can cause the system’s supply voltages to temporarily go out
of regulation, causing data loss or system lock-up. In more
extreme cases, the transients occurring during a hot swap
event may cause permanent damage to connectors or on-
board components.
The MIC2588 and the MIC2594 are designed to address
these issues by limiting the magnitude of the transient current
during hot swap events. This is achieved by controlling the
rate at which power is applied to the circuit board (di/dt and
dv/dt management). In addition, to inrush current control, the
MIC2588 and the MIC2594 incorporate input voltage super-
visory functions and current limiting, thereby providing robust
protection for both the system and the circuit board.
Start-Up Cycle
When the input voltage to the IC is between the overvoltage
and undervoltage thresholds (MIC2588) or is greater than
V
ON (MIC2594), a start cycle is initiated. At this time, the
GATE pin of the IC applies a constant charging current
(I
GATEON) to the gate of the external MOSFET (M1). CFDBK
creates a Miller integrator out of the MOSFET circuit, which
limits the slew-rate of the voltage at the drain of M1. The drain
voltage rate-of-change (dv/dt) of M1 is:
dv M1
dt
I
C
I
C
DRAIN
GATE(–)
FDBK
GATEON
FDBK
()
=


=


where I
GATE(+) = Gate Charging Current = IGATEON;
I
GATE(–)
≅ –I
GATE(+),
due to the extremely high
transconductance values of power MOSFETs; and
IC
dv M1
dt
GATE(–)
FDBK
DRAIN
()
Relating the above to the maximum transient current into the
load capacitance to be charged upon hot swap or power-up
involves a simple extension of the same formula:
I
Cdv M1
dt
IC
I
C
| I
|
CI
C
CHARGE
LOAD
DRAIN
CHARGE
LOAD
GATEON
FDBK
CHARGE
LOAD
GATEON
FDBK
=
×
()


=
×
Transposing:
C
CI
| I
|
FDBK
LOAD
GATEON
CHARGE
=
×
(1)
C
GATE and RFDBK prevent turn-on and hot swap current
surges which would otherwise be caused by (C
FDBK +
C
D-G(M1)) coupling turn-on transients from the drain to the
gate of M1. An appropriate value for C
GATE may be deter-
mined using the formula for a capacitive voltage divider:
Maximum voltage on C
GATE at turn-on must be less than
V
THRESHOLD of M1:
1. For a standard 10V enhancement N-Channel
MOSFET, V
THRESHOLD is about 4.25V.
2. Choose 3.5V as a safe maximum voltage to safely
avoid turn-on transients.
V
G-S(M1) × [CGATE + (CFDBK + CD-G(M1))]
= [(V
DD – VEE(min)) × (CFDBK + CD-G(M1))]
V
G-S(M1) × CGATE = [(VDD – VEE(min)) – VG-S(M1)] × (CFDBK + CD-G(M1))
CC
C
V
– V (min) – V
V
GATE
FDBK
D G(Q1)
DD
EE
G-S(M1)
G-S(M1)
=+
()×()
(2)
While the value for R
FDBK is not critical, it should be chosen
to allow a maximum of several milliamperes to flow in the
gate-drain circuit of M1 during turn-on. While the final value
for R
FDBK is determined empirically, initial values between
R
FDBK = 15kΩ to 27kΩ for systems with a maximum value of
75V for (V
DD – VEE(min)) are appropriate.
Resistor R4, in series with the MOSFETs gate, minimizes the
potential for parasitic high frequency oscillations from occur-
ring in M1. While the exact value of R4 is not critical,
commonly used values for R4 range from 10
Ω to 33Ω.
For example, let us assume a hot swap controller is required
to maintain the inrush current into a 150
µF load capacitance
at 1.7A maximum, and that this circuit may operate from
supply voltages as high as (V
DD – VEE) = 75V. The MOSFET
to be used with the MIC2588/94 is an IRF540NS 100V
D2PAK device which has a typical (C
D-G) of 250pF.
Calculating a value for C
FBDK using Equation 1 yields:
C
150 F
45 A
1.7A
3.97nF
FDBK =
µ×
µ =
Good engineering practice suggests the use of the worst-
case parameter values for I
GATEON from the “DC Electrical
Characteristics” section:
C
150 F
60 A
1.7A
5.3nF
FDBK =
µ× µ =
where the nearest standard 5% value is 5.6nF. Substituting
5.6nF into Equation 2 from above yields:
C
5.6nF
250pF
75V – 3.5V
3.5V
0.12 F
GATE =+
() × ()
Finally, choosing R4 = 10
Ω and R
FDBK = 20kΩ will yield a
suitable, initial design for prototyping.


Similar Part No. - MIC2594-2BM

ManufacturerPart #DatasheetDescription
logo
Micrel Semiconductor
MIC2594-2BM MICREL-MIC2594-2BM Datasheet
1Mb / 21P
   Single-Channel, Negative High-Voltage Hot Swap Power Controllers
More results

Similar Description - MIC2594-2BM

ManufacturerPart #DatasheetDescription
logo
Micrel Semiconductor
MIC2588 MICREL-MIC2588_05 Datasheet
1Mb / 21P
   Single-Channel, Negative High-Voltage Hot Swap Power Controllers
MIC2589 MICREL-MIC2589 Datasheet
100Kb / 17P
   SINGLE-CHANNEL NEGATIVE HIGH VOLTAGE HOT SWAP POWER CONTROLLERS/SEQUENCERS
logo
Linear Technology
LTC4252-1 LINER-LTC4252-1 Datasheet
399Kb / 36P
   Negative Voltage Hot Swap Controllers
LTC4252-1 LINER-LTC4252-1_12 Datasheet
319Kb / 36P
   Negative Voltage Hot Swap Controllers
LTC4252B-2 LINER-LTC4252B-2_15 Datasheet
467Kb / 36P
   Negative Voltage Hot Swap Controllers
LTC4252-1 LINER-LTC4252-1_15 Datasheet
334Kb / 36P
   Negative Voltage Hot Swap Controllers
LTC4252-2 LINER-LTC4252-2_15 Datasheet
334Kb / 36P
   Negative Voltage Hot Swap Controllers
LTC4252A-1 LINER-LTC4252A-1_15 Datasheet
334Kb / 36P
   Negative Voltage Hot Swap Controllers
LTC4252A-2 LINER-LTC4252A-2_15 Datasheet
334Kb / 36P
   Negative Voltage Hot Swap Controllers
LTC4252C-1 LINER-LTC4252C-1_15 Datasheet
467Kb / 36P
   Negative Voltage Hot Swap Controllers
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.NET
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com