Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.NET

X  

AD549JHZ Datasheet(PDF) 11 Page - Analog Devices

Part # AD549JHZ
Description  Ultralow Input Bias Current Operational Amplifier
Download  19 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  AD [Analog Devices]
Direct Link  http://www.analog.com
Logo AD - Analog Devices

AD549JHZ Datasheet(HTML) 11 Page - Analog Devices

Back Button AD549JHZ Datasheet HTML 7Page - Analog Devices AD549JHZ Datasheet HTML 8Page - Analog Devices AD549JHZ Datasheet HTML 9Page - Analog Devices AD549JHZ Datasheet HTML 10Page - Analog Devices AD549JHZ Datasheet HTML 11Page - Analog Devices AD549JHZ Datasheet HTML 12Page - Analog Devices AD549JHZ Datasheet HTML 13Page - Analog Devices AD549JHZ Datasheet HTML 14Page - Analog Devices AD549JHZ Datasheet HTML 15Page - Analog Devices Next Button
Zoom Inzoom in Zoom Outzoom out
 11 / 19 page
background image
AD549
Data Sheet
Rev. K | Page 10 of 18
FUNCTIONAL DESCRIPTION
MINIMIZING INPUT CURRENT
The AD549 is optimized for low input current and offset
voltage. Careful attention to how the amplifier is used reduces
input currents in actual applications.
Keep the amplifier operating temperature as low as possible to
minimize input current. Like other JFET input amplifiers, the
AD549 input current is sensitive to chip temperature, rising by
a factor of 2.3 for every 10°C. Figure 25 is a plot of the AD549
input current vs. ambient temperature.
1nA
100pA
10pA
1pA
100fA
10fA
1fA
–55
–25
5
35
65
125
95
TEMPERATURE (°C)
Figure 25. Input Bias Current vs. Ambient Temperature
On-chip power dissipation raises the chip operating tempera-
ture, causing an increase in input bias current. Due to the low
quiescent supply current of the AD549, the chip temperature
is less than 3°C higher than its ambient temperature when the
(unloaded) amplifier is operating with 15 V supplies. The
difference in the input current is negligible.
However, heavy output loads can cause a significant increase in
chip temperature and a corresponding increase in the input
current. Maintaining a minimum load resistance of 10 Ω is
recommended. Input current vs. additional power dissipation
due to output drive current is plotted in Figure 26.
6
5
4
3
2
1
0
25
50
75
100
125
150
175
200
ADDITIONAL INTERNAL POWER DISSIPATION (mW)
BASED ON
TYPICAL IB = 40fA
Figure 26. Input Bias Current vs. Additional Power Dissipation
CIRCUIT BOARD NOTES
A number of physical phenomena generate spurious currents
that degrade the accuracy of low current measurements. Figure 27
is a schematic of a current to voltage (I-to-V) converter with
these parasitic currents modeled.
2
3
6
8
AD549
+
VOUT
fS
CF
RF
VS
RP
CP
II' =
+V +
CP
V
RP
dCP
dT
dV
dT
Figure 27. Sources of Parasitic Leakage Currents
Finite resistance from input lines to voltages on the board,
modeled by Resistor RP, results in parasitic leakage. Insulation
resistance of more than 1015 Ω must be maintained between
the amplifier signal and supply lines to capitalize on the low
input currents of the AD549. Standard PCB material does not
have high enough insulation resistance; therefore, connect the
input leads of the AD549 to standoffs made of insulating
material with adequate volume resistivity (that is, Teflon®). The
surface of the insulator must be kept clean to preserve surface
resistivity. For Teflon, an effective cleaning procedure consists
of swabbing the surface with high grade isopropyl alcohol,
rinsing with deionized water, and baking the board at 80°C for
10 minutes.
In addition to high volume and surface resistivity, other proper-
ties are desirable in the insulating material chosen. Resistance
to water absorption is important because surface water films
drastically reduce surface resistivity. The insulator chosen
should also exhibit minimal piezoelectric effects (charge
emission due to mechanical stress) and triboelectric effects
(charge generated by friction). Charge imbalances generated
by these mechanisms can appear as parasitic leakage currents.
These effects are modeled by Variable Capacitor CP in Figure 27.
Table 3 lists various insulators and their properties.2
Guarding the input lines by completely surrounding them with
a metal conductor biased near the potential of the input lines
has two major benefits. First, parasitic leakage from the signal
line is reduced because the voltage between the input line and
the guard is very low. Second, stray capacitance at the input
node is minimized. Input capacitance can substantially degrade
signal bandwidth and the stability of the I-to-V converter.
2 Electronic Measurements, pp. 15–17, Keithley Instruments, Inc., Cleveland,
Ohio, 1977.


Similar Part No. - AD549JHZ

ManufacturerPart #DatasheetDescription
logo
Analog Devices
AD549JHZ AD-AD549JHZ Datasheet
1Mb / 20P
   Ultralow Input Bias Current Operational Amplifier
Rev. H
More results

Similar Description - AD549JHZ

ManufacturerPart #DatasheetDescription
logo
Analog Devices
AD549 AD-AD549_08 Datasheet
1Mb / 20P
   Ultralow Input Bias Current Operational Amplifier
Rev. H
AD549 AD-AD549 Datasheet
418Kb / 12P
   Ultralow Input Bias Current Operational Amplifier
REV. A
logo
List of Unclassifed Man...
HT1104Z ETC1-HT1104Z Datasheet
27Kb / 2P
   HIGH TEMPERATURE QUAD ULTRALOW INPUT BIAS CURRENT OPERATIONAL AMPLIFIER
logo
Analog Devices
OP-297 AD-OP-297 Datasheet
592Kb / 16P
   DUAL LOW BIAS CURRENT PRECISION OPERATIONAL AMPLIFIER
REV. B
logo
Texas Instruments
OPA129UBE4 TI-OPA129UBE4 Datasheet
652Kb / 14P
[Old version datasheet]   Ultra-Low Bias Current Difet짰 OPERATIONAL AMPLIFIER
logo
Analog Devices
OP297 AD-OP297_06 Datasheet
323Kb / 16P
   Dual Low Bias Current Precision Operational Amplifier
Rev. F
OP297 AD-OP297_03 Datasheet
266Kb / 12P
   Dual Low Bias Current Precision Operational Amplifier
REV. E
logo
Burr-Brown (TI)
OPA129 BURR-BROWN-OPA129 Datasheet
640Kb / 7P
   Ultra-Low Bias Current Difet OPERATIONAL AMPLIFIER
logo
Analog Devices
OP297 AD-OP297_15 Datasheet
342Kb / 16P
   Dual Low Bias Current Precision Operational Amplifier
OP297 AD-OP297 Datasheet
191Kb / 16P
   Dual Low Bias Current Precision Operational Amplifier
REV. D
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.NET
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com