Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.NET

X  

CS5422 Datasheet(PDF) 13 Page - ON Semiconductor

Part # CS5422
Description  Dual Out?뭥f?뭁hase Synchronous Buck Controller with Current Limit
Download  17 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  ONSEMI [ON Semiconductor]
Direct Link  http://www.onsemi.com
Logo ONSEMI - ON Semiconductor

CS5422 Datasheet(HTML) 13 Page - ON Semiconductor

Back Button CS5422 Datasheet HTML 9Page - ON Semiconductor CS5422 Datasheet HTML 10Page - ON Semiconductor CS5422 Datasheet HTML 11Page - ON Semiconductor CS5422 Datasheet HTML 12Page - ON Semiconductor CS5422 Datasheet HTML 13Page - ON Semiconductor CS5422 Datasheet HTML 14Page - ON Semiconductor CS5422 Datasheet HTML 15Page - ON Semiconductor CS5422 Datasheet HTML 16Page - ON Semiconductor CS5422 Datasheet HTML 17Page - ON Semiconductor  
Zoom Inzoom in Zoom Outzoom out
 13 / 17 page
background image
CS5422
http://onsemi.com
13
Both logic level and standard FETs can be used.
Voltage applied to the FET gates depends on the
application circuit used. Both upper and lower gate driver
outputs are specified to drive to within 1.5 V of ground when
in the low state and to within 2.0 V of their respective bias
supplies when in the high state. In practice, the FET gates
will be driven rail−to−rail due to overshoot caused by the
capacitive load they present to the controller IC.
Selection of the Switching (Upper) FET
The designer must ensure that the total power dissipation
in the FET switch does not cause the power component’s
junction temperature to exceed 150°C.
The maximum RMS current through the switch can be
determined by the following formula:
IRMS(H) +
IL(PEAK)2 ) (IL(PEAK)
IL(VALLEY))
) IL(VALLEY)2
D
3
where:
IRMS(H) = maximum switching MOSFET RMS current;
IL(PEAK) = inductor peak current;
IL(VALLEY) = inductor valley current;
D = duty cycle.
Once the RMS current through the switch is known, the
switching MOSFET conduction losses can be calculated:
PRMS(H) + IRMS(H)2
RDS(ON)
where:
PRMS(H) = switching MOSFET conduction losses;
IRMS(H) = maximum switching MOSFET RMS current;
RDS(ON) = FET drain−to−source on−resistance
The upper MOSFET switching losses are caused during
MOSFET switch−on and switch−off and can be determined
by using the following formula:
PSWH + PSWH(ON) ) PSWH(OFF)
+
VIN
IOUT
(tRISE ) tFALL)
6T
where:
PSWH(ON) = upper MOSFET switch−on losses;
PSWH(OFF) = upper MOSFET switch−off losses;
VIN = input voltage;
IOUT = load current;
tRISE = MOSFET rise time (from FET manufacturer’s
switching characteristics performance curve);
tFALL = MOSFET fall time (from FET manufacturer’s
switching characteristics performance curve);
T = 1/fSW = period.
The total power dissipation in the switching MOSFET can
then be calculated as:
PHFET(TOTAL) + PRMS(H) ) PSWH(ON) ) PSWH(OFF)
where:
PHFET(TOTAL) = total switching (upper) MOSFET losses;
PRMS(H) = upper MOSFET switch conduction Losses;
PSWH(ON) = upper MOSFET switch−on losses;
PSWH(OFF) = upper MOSFET switch−off losses;
Once the total power dissipation in the switching FET is
known, the maximum FET switch junction temperature can
be calculated:
TJ + TA ) [PHFET(TOTAL)
RQJA]
where:
TJ = FET junction temperature;
TA = ambient temperature;
PHFET(TOTAL) = total switching (upper) FET losses;
RΘJA = upper FET junction−to−ambient thermal resistance.
Selection of the Synchronous (Lower) FET
The switch conduction losses for the lower FET can be
calculated as follows:
+ [IOUT
(1 * D)]2
RDS(ON)
PRMS(L) + IRMS2
RDS(ON)
where:
PRMS(L) = lower MOSFET conduction losses;
IOUT = load current;
D = Duty Cycle;
RDS(ON) = lower FET drain−to−source on−resistance.
The synchronous MOSFET has no switching losses,
except for losses in the internal body diode, because it turns
on into near zero voltage conditions. The MOSFET body
diode will conduct during the non−overlap time and the
resulting power dissipation (neglecting reverse recovery
losses) can be calculated as follows:
PSWL + VSD
ILOAD
non−overlap time
fSW
where:
PSWL = lower FET switching losses;
VSD = lower FET source−to−drain voltage;
ILOAD = load current;
Non−overlap time = GATE(L)−to−GATE(H) or
GATE(H)−to−GATE(L) delay (from CS5422 data sheet
Electrical Characteristics section);
fSW = switching frequency.
The total power dissipation in the synchronous (lower)
MOSFET can then be calculated as:
PLFET(TOTAL) + PRMS(L) ) PSWL
where:
PLFET(TOTAL) = Synchronous (lower) FET total losses;
PRMS(L) = Switch Conduction Losses;
PSWL = Switching losses.
Once the total power dissipation in the synchronous FET
is known the maximum FET switch junction temperature
can be calculated:
TJ + TA ) [PLFET(TOTAL)
RQJA]
where:
TJ = MOSFET junction temperature;
TA = ambient temperature;
PLFET(TOTAL) = total synchronous (lower) FET losses;
RΘJA = lower FET junction−to−ambient thermal resistance.


Similar Part No. - CS5422

ManufacturerPart #DatasheetDescription
logo
ON Semiconductor
CS5421 ONSEMI-CS5421 Datasheet
298Kb / 14P
   Dual Out?뭥f?뭁hase Synchronous Buck Controller with Remote Sense
July, 2006 ??Rev. 10
CS5421GD16 ONSEMI-CS5421GD16 Datasheet
298Kb / 14P
   Dual Out?뭥f?뭁hase Synchronous Buck Controller with Remote Sense
July, 2006 ??Rev. 10
CS5421GDR16 ONSEMI-CS5421GDR16 Datasheet
298Kb / 14P
   Dual Out?뭥f?뭁hase Synchronous Buck Controller with Remote Sense
July, 2006 ??Rev. 10
More results

Similar Description - CS5422

ManufacturerPart #DatasheetDescription
logo
ON Semiconductor
NCP5422A ONSEMI-NCP5422A_06 Datasheet
163Kb / 16P
   Dual Out?뭥f?뭁hase Synchronous Buck Controller with Current Limit
April, 2006 ??Rev. 7
CS5421 ONSEMI-CS5421 Datasheet
298Kb / 14P
   Dual Out?뭥f?뭁hase Synchronous Buck Controller with Remote Sense
July, 2006 ??Rev. 10
NCP5422A ONSEMI-NCP5422A Datasheet
126Kb / 18P
   Dual Out-of-Phase Synchronous Buck Controller with Current Limit
November, 2003 ??Rev. 4
ADP3430 ONSEMI-ADP3430 Datasheet
373Kb / 26P
   2??to 3?뭁hase Synchronous Buck Controller
July, 2009 ??Rev. 2
NCP5424 ONSEMI-NCP5424 Datasheet
131Kb / 20P
   Dual Synchronous Buck Controller with Input Current Sharing
June, 2003 - Rev. 3
NCP5424 ONSEMI-NCP5424_05 Datasheet
137Kb / 18P
   Dual Synchronous Buck Controller with Input Current Sharing
March, 2005 ??Rev. 4
logo
Microsemi Corporation
NX2119 MICROSEMI-NX2119 Datasheet
499Kb / 16P
   SYNCHRONOUS PWM CONTROLLER WITH CURRENT LIMIT PROTECTION
logo
ON Semiconductor
NCP5306 ONSEMI-NCP5306 Datasheet
872Kb / 24P
   Three?뭁hase VRM 9.0 Buck Controller
July, 2006 ??Rev. 3
CS5307 ONSEMI-CS5307 Datasheet
880Kb / 24P
   Four?뭁hase VRM 9.0 Buck Controller
July, 2006 ??Rev. 9
CS5323 ONSEMI-CS5323_06 Datasheet
328Kb / 16P
   Three?뭁hase Buck Controller with 5?묪it DAC
July, 2006 ??Rev. 7
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.NET
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com