Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.NET

X  

SC4524B Datasheet(PDF) 11 Page - Semtech Corporation

Part # SC4524B
Description  16V 2A Step-Down Switching Regulator
Download  18 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  SEMTECH [Semtech Corporation]
Direct Link  http://www.semtech.com
Logo SEMTECH - Semtech Corporation

SC4524B Datasheet(HTML) 11 Page - Semtech Corporation

Back Button SC4524B Datasheet HTML 7Page - Semtech Corporation SC4524B Datasheet HTML 8Page - Semtech Corporation SC4524B Datasheet HTML 9Page - Semtech Corporation SC4524B Datasheet HTML 10Page - Semtech Corporation SC4524B Datasheet HTML 11Page - Semtech Corporation SC4524B Datasheet HTML 12Page - Semtech Corporation SC4524B Datasheet HTML 13Page - Semtech Corporation SC4524B Datasheet HTML 14Page - Semtech Corporation SC4524B Datasheet HTML 15Page - Semtech Corporation Next Button
Zoom Inzoom in Zoom Outzoom out
 11 / 18 page
background image
Minimum Off Time Limitation
The PWM latch in Figure 2 is reset every cycle by the
clock. The clock also turns off the power transistor to
refresh the bootstrap capacitor. This minimum off time
limits the attainable duty cycle of the regulator at a given
switching frequency. The measured minimum off time is
100ns typically. If the required duty cycle is higher than
the attainable maximum, then the output voltage will not
be able to reach its set value in continuous-conduction
mode.
Inductor Selection
The inductor ripple current for a non-synchronous step-
down converter in continuous-conduction mode is
(3)
where F
SW is the switching frequency and L1 is the
inductance.
An inductor ripple current between 20% to 50% of the
maximum load current gives a good compromise among
efficiency, cost and size. Re-arranging Equation (3) and
assuming 35% inductor ripple current, the inductor is
given by
(4)
If the input voltage varies over a wide range, then choose
L
1 based on the nominal input voltage. Always verify
converter operation at the input voltage extremes.
The peak current limit of SC4524B power transistor is at
least 2.6A. The maximum deliverable load current for the
SC4524B is 2.6A minus one half of the inductor ripple
current.
Input Decoupling Capacitor
The input capacitor should be chosen to handle the RMS
ripple current of a buck converter. This value is given by
(5)
CESAT
D
IN
D
O
V
V
V
V
V
D
+
+
=
=
1
V
0
.
1
V
R
R
O
6
4
1
SW
D
O
L
L
F
)
D
1
(
)
V
V
(
I
+
=
D
SW
O
D
O
1
F
I
%
20
)
D
1
(
)
V
V
(
L
+
=
)
D
1
(
D
I
I
O
CIN
_
RMS
=


+
D
=
D
O
SW
L
O
C
F
8
1
ESR
I
V
SW
IN
O
IN
F
V
4
I
C
D
>
,
R
G
R
G
S
CA
PWM
)
/
s
Q
/
s
1
()
/
s
1
(
)
C
R
s
1
(
G
V
V
2
n
2
n
p
O
ESR
PWM
c
o
ω
+
ω
+
ω
+
+
=
7
1
Z
5
R
F
2
1
C
π
=
7
1
P
8
R
F
2
1
C
π
=
,
C
R
1
O
p
ω
,
C
R
1
O
ESR
Z =
ω
k
3
.
22
10
28
.
0
10
R
3
7
20
9
.
15
=
=
nF
45
.
0
10
1
.
22
10
16
2
1
C
3
3
5
=
π
=
pF
12
10
1
.
22
10
600
2
1
C
3
3
8
=
π
=


π
=
O
FB
O
C
S
CA
C
V
V
C
F
2
1
R
G
1
log
20
A
dB
9
.
15
3
.
3
0
.
1
10
22
10
80
2
1
10
1
.
6
28
1
log
20
A
6
3
3
C
=
π
=
m
7
g
10
R
20
C
A
=
CESAT
D
IN
D
O
V
V
V
V
V
D
+
+
=
=
1
V
0
.
1
V
R
R
O
6
4
1
SW
D
O
L
L
F
)
D
1
(
)
V
V
(
I
+
=
D
SW
O
D
O
1
F
I
%
20
)
D
1
(
)
V
V
(
L
+
=
)
D
1
(
D
I
I
O
CIN
_
RMS
=


+
D
=
D
O
SW
L
O
C
F
8
1
ESR
I
V
SW
IN
O
IN
F
V
4
I
C
D
>
,
R
G
R
G
S
CA
PWM
)
/
s
Q
/
s
1
()
/
s
1
(
)
C
R
s
1
(
G
V
V
2
n
2
n
p
O
ESR
PWM
c
o
ω
+
ω
+
ω
+
+
=
7
1
Z
5
R
F
2
1
C
π
=
7
1
P
8
R
F
2
1
C
π
=
,
C
R
1
O
p
ω
,
C
R
1
O
ESR
Z =
ω
k
3
.
22
10
28
.
0
10
R
3
7
20
9
.
15
=
=
nF
45
.
0
10
1
.
22
10
16
2
1
C
3
3
5
=
π
=
pF
12
10
1
.
22
10
600
2
1
C
3
3
8
=
π
=


π
=
O
FB
O
C
S
CA
C
V
V
C
F
2
1
R
G
1
log
20
A
dB
9
.
15
3
.
3
0
.
1
10
22
10
80
2
1
10
1
.
6
28
1
log
20
A
6
3
3
C
=
π
=
m
7
g
10
R
20
C
A
=
CESAT
D
IN
D
O
V
V
V
V
V
D
+
+
=
=
1
V
0
.
1
V
R
R
O
6
4
1
SW
D
O
L
L
F
)
D
1
(
)
V
V
(
I
+
=
D
)
D
1
(
D
I
I
O
CIN
_
RMS
=


+
D
=
D
O
SW
L
O
C
F
8
1
ESR
I
V
SW
IN
O
IN
F
V
4
I
C
D
>
,
R
G
R
G
S
CA
PWM
)
/
s
Q
/
s
1
()
/
s
1
(
)
C
R
s
1
(
G
V
V
2
n
2
n
p
O
ESR
PWM
c
o
ω
+
ω
+
ω
+
+
=
7
1
Z
5
R
F
2
1
C
π
=
7
1
P
8
R
F
2
1
C
π
=
,
C
R
1
O
p
ω
,
C
R
1
O
ESR
Z =
ω
k
3
.
22
10
28
.
0
10
R
3
7
20
9
.
15
=
=
nF
45
.
0
10
1
.
22
10
16
2
1
C
3
3
5
=
π
=
pF
12
10
1
.
22
10
600
2
1
C
3
3
8
=
π
=


π
=
O
FB
O
C
S
CA
C
V
V
C
F
2
1
R
G
1
log
20
A
dB
9
.
15
3
.
3
0
.
1
10
22
10
80
2
1
10
1
.
6
28
1
log
20
A
6
3
3
C
=
π
=
m
7
g
10
R
20
C
A
=
SW
O
D
O
1
F
I
%
35
)
D
1
(
)
V
V
(
L
+
=
CESAT
D
IN
D
O
V
V
V
V
V
D
+
+
=
=
1
V
0
.
1
V
R
R
O
6
4
1
SW
D
O
L
L
F
)
D
1
(
)
V
V
(
I
+
=
D
)
D
1
(
D
I
I
O
CIN
_
RMS
=


+
D
=
D
O
SW
L
O
C
F
8
1
ESR
I
V
SW
IN
O
IN
F
V
4
I
C
D
>
,
R
G
R
G
S
CA
PWM
)
/
s
Q
/
s
1
()
/
s
1
(
)
C
R
s
1
(
G
V
V
2
n
2
n
p
O
ESR
PWM
c
o
ω
+
ω
+
ω
+
+
=
7
1
Z
5
R
F
2
1
C
π
=
7
1
P
8
R
F
2
1
C
π
=
,
C
R
1
O
p
ω
,
C
R
1
O
ESR
Z =
ω
k
3
.
22
10
28
.
0
10
R
3
7
20
9
.
15
=
=
nF
45
.
0
10
1
.
22
10
16
2
1
C
3
3
5
=
π
=
pF
12
10
1
.
22
10
600
2
1
C
3
3
8
=
π
=


π
=
O
FB
O
C
S
CA
C
V
V
C
F
2
1
R
G
1
log
20
A
dB
9
.
15
3
.
3
0
.
1
10
22
10
80
2
1
10
1
.
6
28
1
log
20
A
6
3
3
C
=
π
=
m
7
g
10
R
20
C
A
=
SW
O
D
O
1
F
I
%
35
)
D
1
(
)
V
V
(
L
+
=
CESAT
D
IN
D
O
V
V
V
V
V
D
+
+
=
=
1
V
0
.
1
V
R
R
O
6
4
1
SW
D
O
L
L
F
)
D
1
(
)
V
V
(
I
+
=
D
SW
O
D
O
1
F
I
%
20
)
D
1
(
)
V
V
(
L
+
=
)
D
1
(
D
I
I
O
CIN
_
RMS
=


+
D
=
D
O
SW
L
O
C
F
8
1
ESR
I
V
SW
IN
O
IN
F
V
4
I
C
D
>
,
R
G
R
G
S
CA
PWM
)
/
s
Q
/
s
1
()
/
s
1
(
)
C
R
s
1
(
G
V
V
2
n
2
n
p
O
ESR
PWM
c
o
ω
+
ω
+
ω
+
+
=
7
1
Z
5
R
F
2
1
C
π
=
7
1
P
8
R
F
2
1
C
π
=
,
C
R
1
O
p
ω
,
C
R
1
O
ESR
Z =
ω
k
3
.
22
10
28
.
0
10
R
3
7
20
9
.
15
=
=
nF
45
.
0
10
1
.
22
10
16
2
1
C
3
3
5
=
π
=
pF
12
10
1
.
22
10
600
2
1
C
3
3
8
=
π
=


π
=
O
FB
O
C
S
CA
C
V
V
C
F
2
1
R
G
1
log
20
A
dB
9
.
15
3
.
3
0
.
1
10
22
10
80
2
1
10
1
.
6
28
1
log
20
A
6
3
3
C
=
π
=
m
7
g
10
R
20
C
A
=
CESAT
D
IN
D
O
V
V
V
V
V
D
+
+
=
=
1
V
0
.
1
V
R
R
O
6
4
1
SW
D
O
L
L
F
)
D
1
(
)
V
V
(
I
+
=
D
SW
O
D
O
1
F
I
%
20
)
D
1
(
)
V
V
(
L
+
=
)
D
1
(
D
I
I
O
CIN
_
RMS
=


+
D
=
D
O
SW
L
O
C
F
8
1
ESR
I
V
SW
IN
O
IN
F
V
4
I
C
D
>
,
R
G
R
G
S
CA
PWM
)
/
s
Q
/
s
1
()
/
s
1
(
)
C
R
s
1
(
G
V
V
2
n
2
n
p
O
ESR
PWM
c
o
ω
+
ω
+
ω
+
+
=
7
1
Z
5
R
F
2
1
C
π
=
7
1
P
8
R
F
2
1
C
π
=
,
C
R
1
O
p
ω
,
C
R
1
O
ESR
Z =
ω
k
3
.
22
10
28
.
0
10
R
3
7
20
9
.
15
=
=
nF
45
.
0
10
1
.
22
10
16
2
1
C
3
3
5
=
π
=
pF
12
10
1
.
22
10
600
2
1
C
3
3
8
=
π
=


π
=
O
FB
O
C
S
CA
C
V
V
C
F
2
1
R
G
1
log
20
A
dB
9
.
15
3
.
3
0
.
1
10
22
10
80
2
1
10
1
.
6
28
1
log
20
A
6
3
3
C
=
π
=
m
7
g
10
R
20
C
A
=
The input capacitance must also be high enough to keep
input ripple voltage within specification. This is important
in reducing the conductive EMI from the regulator. The
input capacitance can be estimated from
(6)
where DV
IN is the allowable input ripple voltage.
Multi-layer ceramic capacitors, which have very low ESR
(a few mW) and can easily handle high RMS ripple current,
are the ideal choice for input filtering. A single 4.7µF
X5R ceramic capacitor is adequate for 500kHz or higher
switching frequency applications, and 10µF is adequate
for 200kHz to 500kHz switching frequency. For high
voltage applications, a small ceramic (1µF or 2.2µF) can be
placed in parallel with a low ESR electrolytic capacitor to
satisfy both the ESR and bulk capacitance requirements.
Output Capacitor
The output ripple voltage DV
O of a buck converter can be
expressed as
(7)
where C
O is the output capacitance.
Since the inductor ripple current DI
L increases as D
decreases (Equation (3)), the output ripple voltage is
therefore the highest when V
IN is at its maximum.
A 10µF to 47µF X5R ceramic capacitor is found adequate
for output filtering in most applications. Ripple current
in the output capacitor is not a concern because the
inductor current of a buck converter directly feeds C
O,
resulting in very low ripple current. Avoid using Z5U
and Y5V ceramic capacitors for output filtering because
these types of capacitors have high temperature and high
voltage coefficients.
Freewheeling Diode
Use of Schottky barrier diodes as freewheeling rectifiers
reduces diode reverse recovery input current spikes,
easing high-side current sensing in the SC4524B. These
CESAT
D
IN
D
O
V
V
V
V
V
D
+
+
=
=
1
V
0
.
1
V
R
R
O
6
4
1
SW
D
O
L
L
F
)
D
1
(
)
V
V
(
I
+
=
D
SW
O
D
O
1
F
I
%
20
)
D
1
(
)
V
V
(
L
+
=
)
D
1
(
D
I
I
O
CIN
_
RMS
=


+
D
=
D
O
SW
L
O
C
F
8
1
ESR
I
V
SW
IN
O
IN
F
V
4
I
C
D
>
,
R
G
R
G
S
CA
PWM
)
/
s
Q
/
s
1
()
/
s
1
(
)
C
R
s
1
(
G
V
V
2
n
2
n
p
O
ESR
PWM
c
o
ω
+
ω
+
ω
+
+
=
7
1
Z
5
R
F
2
1
C
π
=
7
1
P
8
R
F
2
1
C
π
=
,
C
R
1
O
p
ω
,
C
R
1
O
ESR
Z =
ω
k
3
.
22
10
28
.
0
10
R
3
7
20
9
.
15
=
=
nF
45
.
0
10
1
.
22
10
16
2
1
C
3
3
5
=
π
=
pF
12
10
1
.
22
10
600
2
1
C
3
3
8
=
π
=


π
=
O
FB
O
C
S
CA
C
V
V
C
F
2
1
R
G
1
log
20
A
dB
9
.
15
3
.
3
0
.
1
10
22
10
80
2
1
10
1
.
6
28
1
log
20
A
6
3
3
C
=
π
=
m
7
g
10
R
20
C
A
=
CESAT
D
IN
D
O
V
V
V
V
V
D
+
+
=
=
1
V
0
.
1
V
R
R
O
6
4
1
SW
D
O
L
L
F
)
D
1
(
)
V
V
(
I
+
=
D
SW
O
D
O
1
F
I
%
20
)
D
1
(
)
V
V
(
L
+
=
)
D
1
(
D
I
I
O
CIN
_
RMS
=


+
D
=
D
O
SW
L
O
C
F
8
1
ESR
I
V
SW
IN
O
IN
F
V
4
I
C
D
>
,
R
G
R
G
S
CA
PWM
)
/
s
Q
/
s
1
()
/
s
1
(
)
C
R
s
1
(
G
V
V
2
n
2
n
p
O
ESR
PWM
c
o
ω
+
ω
+
ω
+
+
=
7
1
Z
5
R
F
2
1
C
π
=
7
1
P
8
R
F
2
1
C
π
=
,
C
R
1
O
p
ω
,
C
R
1
O
ESR
Z =
ω
k
3
.
22
10
28
.
0
10
R
3
7
20
9
.
15
=
=
nF
45
.
0
10
1
.
22
10
16
2
1
C
3
3
5
=
π
=
pF
12
10
1
.
22
10
600
2
1
C
3
3
8
=
π
=


π
=
O
FB
O
C
S
CA
C
V
V
C
F
2
1
R
G
1
log
20
A
dB
9
.
15
3
.
3
0
.
1
10
22
10
80
2
1
10
1
.
6
28
1
log
20
A
6
3
3
C
=
π
=
m
7
g
10
R
20
C
A
=
CESAT
D
IN
D
O
V
V
V
V
V
D
+
+
=
=
1
V
0
.
1
V
R
R
O
6
4
1
SW
D
O
L
L
F
)
D
1
(
)
V
V
(
I
+
=
D
SW
O
D
O
1
F
I
%
20
)
D
1
(
)
V
V
(
L
+
=
)
D
1
(
D
I
I
O
CIN
_
RMS
=


+
D
=
D
O
SW
L
O
C
F
8
1
ESR
I
V
SW
IN
O
IN
F
V
4
I
C
D
>
,
R
G
R
G
S
CA
PWM
)
/
s
Q
/
s
1
()
/
s
1
(
)
C
R
s
1
(
G
V
V
2
n
2
n
p
O
ESR
PWM
c
o
ω
+
ω
+
ω
+
+
=
7
1
Z
5
R
F
2
1
C
π
=
7
1
P
8
R
F
2
1
C
π
=
,
C
R
1
O
p
ω
,
C
R
1
O
ESR
Z =
ω
k
3
.
22
10
28
.
0
10
R
3
7
20
9
.
15
=
=
nF
45
.
0
10
1
.
22
10
16
2
1
C
3
3
5
=
π
=
pF
12
10
1
.
22
10
600
2
1
C
3
3
8
=
π
=


π
=
O
FB
O
C
S
CA
C
V
V
C
F
2
1
R
G
1
log
20
A
dB
9
.
15
3
.
3
0
.
1
10
22
10
80
2
1
10
1
.
6
28
1
log
20
A
6
3
3
C
=
π
=
m
7
g
10
R
20
C
A
=
CESAT
D
IN
D
O
V
V
V
V
V
D
+
+
=
=
1
V
0
.
1
V
R
R
O
6
4
1
SW
D
O
L
L
F
)
D
1
(
)
V
V
(
I
+
=
D
SW
O
D
O
1
F
I
%
20
)
D
1
(
)
V
V
(
L
+
=
)
D
1
(
D
I
I
O
CIN
_
RMS
=


+
D
=
D
O
SW
L
O
C
F
8
1
ESR
I
V
SW
IN
O
IN
F
V
4
I
C
D
>
,
R
G
R
G
S
CA
PWM
)
/
s
Q
/
s
1
()
/
s
1
(
)
C
R
s
1
(
G
V
V
2
n
2
n
p
O
ESR
PWM
c
o
ω
+
ω
+
ω
+
+
=
7
1
Z
5
R
F
2
1
C
π
=
7
1
P
8
R
F
2
1
C
π
=
,
C
R
1
O
p
ω
,
C
R
1
O
ESR
Z =
ω
k
3
.
22
10
28
.
0
10
R
3
7
20
9
.
15
=
=
nF
45
.
0
10
1
.
22
10
16
2
1
C
3
3
5
=
π
=
pF
12
10
1
.
22
10
600
2
1
C
3
3
8
=
π
=


π
=
O
FB
O
C
S
CA
C
V
V
C
F
2
1
R
G
1
log
20
A
dB
9
.
15
3
.
3
0
.
1
10
22
10
80
2
1
10
1
.
6
28
1
log
20
A
6
3
3
C
=
π
=
m
7
g
10
R
20
C
A
=
SC4524B
11
Applications Information (Cont.)


Similar Part No. - SC4524B

ManufacturerPart #DatasheetDescription
logo
Semtech Corporation
SC4524B SEMTECH-SC4524B Datasheet
756Kb / 18P
   18V 2A Step-Down Switching Regulator
SC4524BEVB SEMTECH-SC4524BEVB Datasheet
756Kb / 18P
   18V 2A Step-Down Switching Regulator
SC4524BSETRT SEMTECH-SC4524BSETRT Datasheet
756Kb / 18P
   18V 2A Step-Down Switching Regulator
SC4524B SEMTECH-SC4524B_08 Datasheet
756Kb / 18P
   18V 2A Step-Down Switching Regulator
More results

Similar Description - SC4524B

ManufacturerPart #DatasheetDescription
logo
STMicroelectronics
L4978 STMICROELECTRONICS-L4978_05 Datasheet
584Kb / 13P
   2A STEP DOWN SWITCHING REGULATOR
L5985 STMICROELECTRONICS-L5985 Datasheet
955Kb / 36P
   2A step-down switching regulator
L4978 STMICROELECTRONICS-L4978 Datasheet
135Kb / 12P
   2A STEP DOWN SWITCHING REGULATOR
May 2000
logo
Fairchild Semiconductor
FAN8301 FAIRCHILD-FAN8301 Datasheet
618Kb / 12P
   2A, 16V, Non-Synchronous, Step-Down, DC/DC Regulator
logo
Eutech Microelectronics...
EUP3410 EUTECH-EUP3410 Datasheet
963Kb / 12P
   2A,16V,380KHz Step-Down Converter
logo
Monolithic Power System...
MP28369 MPS-MP28369 Datasheet
210Kb / 8P
   2A, 16V, 1.4MHz Step-Down Converter
logo
Eutech Microelectronics...
EUP3454 EUTECH-EUP3454 Datasheet
125Kb / 1P
   2A,16V,380KHz Step-Down Converter
logo
Semtech Corporation
SC4518H SEMTECH-SC4518H Datasheet
266Kb / 15P
   600kHz, 2A Step-Down Switching Regulator
SC4524A SEMTECH-SC4524A_08 Datasheet
776Kb / 19P
   28V 2A Step-Down Switching Regulator
logo
Anpec Electronics Corop...
APW1173 ANPEC-APW1173 Datasheet
444Kb / 21P
   2A SWITCH STEP DOWN SWITCHING REGULATOR
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.NET
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com