Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.NET

X  

ADP3120A Datasheet(PDF) 5 Page - ON Semiconductor

Part # ADP3120A
Description  Dual Bootstrapped, 12 V MOSFET Driver with Output Disable
Download  8 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  ONSEMI [ON Semiconductor]
Direct Link  http://www.onsemi.com
Logo ONSEMI - ON Semiconductor

ADP3120A Datasheet(HTML) 5 Page - ON Semiconductor

  ADP3120A Datasheet HTML 1Page - ON Semiconductor ADP3120A Datasheet HTML 2Page - ON Semiconductor ADP3120A Datasheet HTML 3Page - ON Semiconductor ADP3120A Datasheet HTML 4Page - ON Semiconductor ADP3120A Datasheet HTML 5Page - ON Semiconductor ADP3120A Datasheet HTML 6Page - ON Semiconductor ADP3120A Datasheet HTML 7Page - ON Semiconductor ADP3120A Datasheet HTML 8Page - ON Semiconductor  
Zoom Inzoom in Zoom Outzoom out
 5 / 8 page
background image
ADP3120A
http://onsemi.com
5
APPLICATIONS INFORMATION
Theory of Operation
The ADP3120A are single phase MOSFET drivers
designed for driving two N−channel MOSFETs in a
synchronous buck converter topology. The ADP3120A will
operate from 5.0 V or 12 V, but have been optimized for high
current multi−phase buck regulators that convert 12 V rail
directly to the core voltage required by complex logic chips.
A single PWM input signal is all that is required to properly
drive the high−side and the low−side MOSFETs. Each driver
is capable of driving a 3 nF load at frequencies up to 1 MHz.
Low−Side Driver
The low−side driver is designed to drive a
ground−referenced low RDS(on) N−Channel MOSFET. The
voltage rail for the low−side driver is internally connected to
the VCC supply and PGND.
High−Side Driver
The high−side driver is designed to drive a floating low
RDS(on) N−channel MOSFET. The gate voltage for the high
side driver is developed by a bootstrap circuit referenced to
Switch Node (SW) pin.
The bootstrap circuit is comprised of an external diode,
and an external bootstrap capacitor. When the ADP3120A
are starting up, the SW pin is at ground, so the bootstrap
capacitor will charge up to VCC through the bootstrap diode
See Figure 4. When the PWM input goes high, the high−side
driver will begin to turn on the high−side MOSFET using the
stored charge of the bootstrap capacitor. As the high−side
MOSFET turns on, the SW pin will rise. When the high−side
MOSFET is fully on, the switch node will be at 12 V, and the
BST pin will be at 12 V plus the charge of the bootstrap
capacitor (approaching 24 V).
The bootstrap capacitor is recharged when the switch
node goes low during the next cycle.
Safety Timer and Overlap Protection Circuit
It is very important that MOSFETs in a synchronous buck
regulator do not both conduct at the same time. Excessive
shoot−through or cross conduction can damage the
MOSFETs, and even a small amount of cross conduction
will cause a decrease in the power conversion efficiency.
The ADP3120A prevent cross conduction by monitoring
the status of the external mosfets and applying the
appropriate amount of “dead−time” or the time between the
turn off of one MOSFET and the turn on of the other
MOSFET.
When the PWM input pin goes high, DRVL will go low
after a propagation delay (tpdlDRVL). The time it takes for
the low−side MOSFET to turn off (tfDRVL) is dependent on
the total charge on the low−side MOSFET gate. The
ADP3120A monitor the gate voltage of both MOSFETs and
the switchnode voltage to determine the conduction status of
the MOSFETs. Once the low−side MOSFET is turned off an
internal timer will delay (tpdhDRVH) the turn on of the
high−side MOSFET
Likewise, when the PWM input pin goes low, DRVH will
go low after the propagation delay (tpdDRVH). The time to
turn off the high−side MOSFET (tfDRVH) is dependent on
the total gate charge of the high−side MOSFET. A timer will
be triggered once the high−side mosfet has stopped
conducting, to delay (tpdhDRVL) the turn on of the
low−side MOSFET
Power Supply Decoupling
The ADP3120A can source and sink relatively large
currents to the gate pins of the external MOSFETs. In order
to maintain a constant and stable supply voltage (VCC) a low
ESR capacitor should be placed near the power and ground
pins. A 1
mF to 4.7 mF multi layer ceramic capacitor (MLCC)
is usually sufficient.
Input Pins
The PWM input and the Output Disable pins of the
ADP3120A have internal protection for Electro Static
Discharge (ESD), but in normal operation they present a
relatively high input impedance. If the PWM controller does
not have internal pulldown resistors, they should be added
externally to ensure that the driver outputs do not go high
before the controller has reached its under voltage lockout
threshold. The NCP5381 controller does include a passive
internal pulldown resistor on the drive−on output pin.
Bootstrap Circuit
The bootstrap circuit uses a charge storage capacitor
(CBST) and the internal (or an external) diode. Selection of
these components can be done after the high−side MOSFET
has been chosen. The bootstrap capacitor must have a
voltage rating that is able to withstand twice the maximum
supply voltage. A minimum 50 V rating is recommended.
The capacitance is determined using the following equation:
CBST +
QGATE
DVBST
where QGATE is the total gate charge of the high−side
MOSFET, and
DVBST is the voltage droop allowed on the
high−side MOSFET drive. For example, a NTD60N03 has
a total gate charge of about 30 nC. For an allowed droop of
300 mV, the required bootstrap capacitance is 100 nF. A
good quality ceramic capacitor should be used.
The bootstrap diode must be rated to withstand the
maximum supply voltage plus any peak ringing voltages
that may be present on SW. The average forward current can
be estimated by:
IF(AVG) + QGATE
fMAX
where fMAX is the maximum switching frequency of the
controller. The peak surge current rating should be checked
in−circuit, since this is dependent on the source impedance
of the 12 V supply and the ESR of CBST.


Similar Part No. - ADP3120A

ManufacturerPart #DatasheetDescription
logo
Analog Devices
ADP3120A AD-ADP3120A Datasheet
292Kb / 16P
   Dual Bootstrapped, 12 V MOSFET Driver with Output Disable
REV. 0
ADP3120AJCPZ-RL AD-ADP3120AJCPZ-RL Datasheet
292Kb / 16P
   Dual Bootstrapped, 12 V MOSFET Driver with Output Disable
REV. 0
logo
ON Semiconductor
ADP3120AJCPZ-RL ONSEMI-ADP3120AJCPZ-RL Datasheet
126Kb / 8P
   Dual Bootstrapped, 12 V MOSFET Driver
June, 2012 ??Rev. 4
logo
Analog Devices
ADP3120AJRZ AD-ADP3120AJRZ Datasheet
292Kb / 16P
   Dual Bootstrapped, 12 V MOSFET Driver with Output Disable
REV. 0
logo
ON Semiconductor
ADP3120AJRZ ONSEMI-ADP3120AJRZ Datasheet
126Kb / 8P
   Dual Bootstrapped, 12 V MOSFET Driver
June, 2012 ??Rev. 4
More results

Similar Description - ADP3120A

ManufacturerPart #DatasheetDescription
logo
ON Semiconductor
NCP3418 ONSEMI-NCP3418 Datasheet
90Kb / 10P
   Dual Bootstrapped 12 V MOSFET Driver with Output Disable
May, 2004 ??Rev. 10
NCP3418 ONSEMI-NCP3418_06 Datasheet
110Kb / 9P
   Dual Bootstrapped 12 V MOSFET Driver with Output Disable
May, 2006 ??Rev. 12
logo
Analog Devices
ADP3650 AD-ADP3650 Datasheet
279Kb / 12P
   Dual, Bootstrapped, 12 V MOSFET Driver with Output Disable
REV. A
ADP3418 AD-ADP3418 Datasheet
326Kb / 16P
   Dual Bootstrapped 12 V MOSFET Driver with Output Disable
REV. B
logo
ON Semiconductor
ADP3121 ONSEMI-ADP3121 Datasheet
147Kb / 10P
   Dual Bootstrapped, 12 V MOSFET Driver with Output Disable
April, 2009 ??Rev. 0
logo
Analog Devices
ADP3120A AD-ADP3120A Datasheet
292Kb / 16P
   Dual Bootstrapped, 12 V MOSFET Driver with Output Disable
REV. 0
logo
ON Semiconductor
ADP3110A ONSEMI-ADP3110A Datasheet
132Kb / 8P
   Dual Bootstrapped, 12 V MOSFET Driver with Output Disable
August, 2008 ??Rev. 4
logo
Analog Devices
ADP3110 AD-ADP3110 Datasheet
245Kb / 12P
   Dual Bootstrapped, 12 V MOSFET Driver with Output Disable
REV. 0
logo
ON Semiconductor
ADP3418 ONSEMI-ADP3418 Datasheet
308Kb / 13P
   Dual Bootstrapped, 12 V MOSFET Driver with Output Disable
May 2010 ??Rev. 6
NCP3418BDR2G ONSEMI-NCP3418BDR2G Datasheet
255Kb / 9P
   Dual Bootstrapped 12 V MOSFET Driver with Output Disable
April, 2007 -- Rev. 13
logo
Analog Devices
ADP3120 AD-ADP3120 Datasheet
272Kb / 16P
   Dual Bootstrapped 12 V MOSFET Driver with Output Disable
REV. 0
More results


Html Pages

1 2 3 4 5 6 7 8


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.NET
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com