Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.NET

X  

STK14C88-5C35M Datasheet(PDF) 4 Page - Cypress Semiconductor

Part # STK14C88-5C35M
Description  256 Kbit (32K x 8) AutoStore nvSRAM
Download  17 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  CYPRESS [Cypress Semiconductor]
Direct Link  http://www.cypress.com
Logo CYPRESS - Cypress Semiconductor

STK14C88-5C35M Datasheet(HTML) 4 Page - Cypress Semiconductor

  STK14C88-5C35M Datasheet HTML 1Page - Cypress Semiconductor STK14C88-5C35M Datasheet HTML 2Page - Cypress Semiconductor STK14C88-5C35M Datasheet HTML 3Page - Cypress Semiconductor STK14C88-5C35M Datasheet HTML 4Page - Cypress Semiconductor STK14C88-5C35M Datasheet HTML 5Page - Cypress Semiconductor STK14C88-5C35M Datasheet HTML 6Page - Cypress Semiconductor STK14C88-5C35M Datasheet HTML 7Page - Cypress Semiconductor STK14C88-5C35M Datasheet HTML 8Page - Cypress Semiconductor STK14C88-5C35M Datasheet HTML 9Page - Cypress Semiconductor Next Button
Zoom Inzoom in Zoom Outzoom out
 4 / 17 page
background image
STK14C88-5
Document Number: 001-51038 Rev. **
Page 4 of 17
Hardware STORE (HSB) Operation
The STK14C88-5 provides the HSB pin for controlling and
acknowledging the STORE operations. The HSB pin is used to
request a hardware STORE cycle. When the HSB pin is driven
LOW, the STK14C88-5 conditionally initiates a STORE
operation after tDELAY. An actual STORE cycle only begins if a
WRITE to the SRAM takes place since the last STORE or
RECALL cycle. The HSB pin also acts as an open drain driver
that is internally driven LOW to indicate a busy condition, while
the STORE (initiated by any means) is in progress. Pull up this
pin with an external 10K ohm resistor to VCAP if HSB is used as
a driver.
SRAM READ and WRITE operations, that are in progress when
HSB is driven LOW by any means, are given time to complete
before the STORE operation is initiated. After HSB goes LOW,
the STK14C88-5 continues SRAM operations for tDELAY. During
tDELAY, multiple SRAM READ operations take place. If a WRITE
is in progress when HSB is pulled LOW, it allows a time, tDELAY
to complete. However, any SRAM WRITE cycles requested after
HSB goes LOW are inhibited until HSB returns HIGH.
During any STORE operation, regardless of how it is initiated,
the STK14C88-5 continues to drive the HSB pin LOW, releasing
it only when the STORE is complete. After completing the
STORE operation, the STK14C88-5 remains disabled until the
HSB pin returns HIGH.
If HSB is not used, it is left unconnected.
Hardware RECALL (Power Up)
During power up or after any low power condition (VCC <
VRESET), an internal RECALL request is latched. When VCC
once again exceeds the sense voltage of VSWITCH, a RECALL
cycle is automatically initiated and takes tHRECALL to complete.
If the STK14C88-5 is in a WRITE state at the end of power up
RECALL, the SRAM data is corrupted. To help avoid this
situation, a 10 Kohm resistor is connected either between WE
and system VCC or between CE and system VCC.
Software STORE
Data is transferred from the SRAM to the nonvolatile memory by
a software address sequence. The STK14C88-5 software
STORE cycle is initiated by executing sequential CE controlled
READ cycles from six specific address locations in exact order.
During the STORE cycle, an erase of the previous nonvolatile
data is first performed followed by a program of the nonvolatile
elements. When a STORE cycle is initiated, input and output are
disabled until the cycle is completed.
Because a sequence of READs from specific addresses is used
for STORE initiation, it is important that no other READ or WRITE
accesses intervene in the sequence. If they intervene, the
sequence is aborted and no STORE or RECALL takes place.
To initiate the software STORE cycle, the following READ
sequence is performed:
1. Read address 0x0E38, Valid READ
2. Read address 0x31C7, Valid READ
3. Read address 0x03E0, Valid READ
4. Read address 0x3C1F, Valid READ
5. Read address 0x303F, Valid READ
6. Read address 0x0FC0, Initiate STORE cycle
The software sequence is clocked with CE controlled READs.
When the sixth address in the sequence is entered, the STORE
cycle commences and the chip is disabled. It is important that
READ cycles and not WRITE cycles are used in the sequence.
It is not necessary that OE is LOW for a valid sequence. After the
tSTORE cycle time is fulfilled, the SRAM is again activated for
READ and WRITE operation.
Software RECALL
Data is transferred from the nonvolatile memory to the SRAM by
a software address sequence. A software RECALL cycle is
initiated with a sequence of READ operations in a manner similar
to the software STORE initiation. To initiate the RECALL cycle,
the following sequence of CE controlled READ operations is
performed:
1. Read address 0x0E38, Valid READ
2. Read address 0x31C7, Valid READ
3. Read address 0x03E0, Valid READ
4. Read address 0x3C1F, Valid READ
5. Read address 0x303F, Valid READ
6. Read address 0x0C63, Initiate RECALL cycle
Internally, RECALL is a two step procedure. First, the SRAM data
is cleared, and then the nonvolatile information is transferred into
the SRAM cells. After the tRECALL cycle time, the SRAM is once
again ready for READ and WRITE operations. The RECALL
operation does not alter the data in the nonvolatile elements. The
nonvolatile data can be recalled an unlimited number of times.
Figure 4. AutoStore Inhibit Mode
[+] Feedback


Similar Part No. - STK14C88-5C35M

ManufacturerPart #DatasheetDescription
logo
List of Unclassifed Man...
STK14C88-5C35M ETC1-STK14C88-5C35M Datasheet
85Kb / 12P
   32K x 8 AUTOSTORE nvSRAM QUANTUM TRAP CMOS NONVOLATILE STATIC RAM
logo
Simtek Corporation
STK14C88-5C35M SIMTEK-STK14C88-5C35M Datasheet
388Kb / 19P
   32Kx8 AutoStore nvSRAM
logo
Cypress Semiconductor
STK14C88-5C35M CYPRESS-STK14C88-5C35M Datasheet
932Kb / 20P
   32 K x 8 AutoStore nvSRAM Commercial, industrial, military temperatures
More results

Similar Description - STK14C88-5C35M

ManufacturerPart #DatasheetDescription
logo
Cypress Semiconductor
STK14C88-3 CYPRESS-STK14C88-3 Datasheet
618Kb / 17P
   256 Kbit (32K x 8) AutoStore nvSRAM
STK16C88 CYPRESS-STK16C88 Datasheet
468Kb / 14P
   256 Kbit (32K x 8) AutoStore nvSRAM
STK16C88-3 CYPRESS-STK16C88-3 Datasheet
456Kb / 14P
   256 Kbit (32K x 8) AutoStore nvSRAM
CY14B256LA CYPRESS-CY14B256LA Datasheet
648Kb / 21P
   256 Kbit (32K x 8) nvSRAM
CY14E256L CYPRESS-CY14E256L Datasheet
799Kb / 16P
   256-Kbit (32K x 8) nvSRAM
STK14C88-3 CYPRESS-STK14C88-3_11 Datasheet
1Mb / 18P
   256 Kbit (32K x 8) AutoStore nvSRAM Unlimited Read/Write endurance
CY14E256L CYPRESS-CY14E256L_09 Datasheet
1Mb / 18P
   256 Kbit (32K x 8) nvSRAM
CY14B256L CYPRESS-CY14B256L Datasheet
1Mb / 17P
   256-Kbit (32K x 8) nvSRAM
CY14E256LA CYPRESS-CY14E256LA Datasheet
606Kb / 19P
   256 Kbit (32K x 8) nvSRAM
CY14B256L CYPRESS-CY14B256L_09 Datasheet
657Kb / 18P
   256 Kbit (32K x 8) nvSRAM
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.NET
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com