![]() |
Electronic Components Datasheet Search |
|
STM32F101X4 Datasheet(PDF) 43 Page - STMicroelectronics |
|
STM32F101X4 Datasheet(HTML) 43 Page - STMicroelectronics |
43 / 73 page ![]() STM32F101x4, STM32F101x6 Electrical characteristics Doc ID 15058 Rev 3 43/74 For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 19). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 19. Typical application with an 8 MHz crystal 1. REXT value depends on the crystal characteristics. Low-speed external clock generated from a crystal/ceramic resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 22. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal Table 21. HSE 4-16 MHz oscillator characteristics(1)(2) 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Based on characterization, not tested in production. Symbol Parameter Conditions Min Typ Max Unit fOSC_IN Oscillator frequency 4 8 16 MHz RF Feedback resistor 200 k C Recommended load capacitance versus equivalent serial resistance of the crystal (RS) (3) 3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions. RS = 30 30 pF i2 HSE driving current VDD = 3.3 V, VIN = VSS with 30 pF load 1mA gm Oscillator transconductance Startup 25 mA/V tSU(HSE) (4) 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer Startup time VDD is stabilized 2 ms ai14128b OSC_OU T OSC_IN fHSE CL1 RF STM32F10xxx 8 MH z resonator Resonator with integrated capacitors Bias controlled gain REXT(1) CL2 |
Similar Part No. - STM32F101X4 |
|
Similar Description - STM32F101X4 |
|
|
Link URL |
Privacy Policy |
ALLDATASHEET.NET |
Does ALLDATASHEET help your business so far? [ DONATE ] |
About Alldatasheet | Advertisement | Contact us | Privacy Policy | Link Exchange | Manufacturer List All Rights Reserved©Alldatasheet.com |
Russian : Alldatasheetru.com | Korean : Alldatasheet.co.kr | Spanish : Alldatasheet.es | French : Alldatasheet.fr | Italian : Alldatasheetit.com Portuguese : Alldatasheetpt.com | Polish : Alldatasheet.pl | Vietnamese : Alldatasheet.vn Indian : Alldatasheet.in | Mexican : Alldatasheet.com.mx | British : Alldatasheet.co.uk | New Zealand : Alldatasheet.co.nz |