Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.NET

X  

AD9240ASZRL Datasheet(PDF) 9 Page - Analog Devices

Part # AD9240ASZRL
Description  Complete 14-Bit, 10 MSPS Monolithic A/D Converter
Download  24 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  AD [Analog Devices]
Direct Link  http://www.analog.com
Logo AD - Analog Devices

AD9240ASZRL Datasheet(HTML) 9 Page - Analog Devices

Back Button AD9240ASZRL Datasheet HTML 5Page - Analog Devices AD9240ASZRL Datasheet HTML 6Page - Analog Devices AD9240ASZRL Datasheet HTML 7Page - Analog Devices AD9240ASZRL Datasheet HTML 8Page - Analog Devices AD9240ASZRL Datasheet HTML 9Page - Analog Devices AD9240ASZRL Datasheet HTML 10Page - Analog Devices AD9240ASZRL Datasheet HTML 11Page - Analog Devices AD9240ASZRL Datasheet HTML 12Page - Analog Devices AD9240ASZRL Datasheet HTML 13Page - Analog Devices Next Button
Zoom Inzoom in Zoom Outzoom out
 9 / 24 page
background image
AD9240
REV.
–9–
The addition of a differential input structure gives the user an
additional level of flexibility that is not possible with traditional
flash converters. The input stage allows the user to easily con-
figure the inputs for either single-ended operation or differential
operation. The A/D’s input structure allows the dc offset of the
input signal to be varied independently of the input span of the
converter. Specifically, the input to the A/D core is the differ-
ence of the voltages applied at the VINA and VINB input pins.
Therefore, the equation,
VCORE = VINA – VINB
(1)
defines the output of the differential input stage and provides
the input to the A/D core.
The voltage, VCORE, must satisfy the condition,
–VREF
≤ V
CORE ≤ VREF
(2)
where VREF is the voltage at the VREF pin.
While an infinite combination of VINA and VINB inputs exist
that satisfy Equation 2, there is an additional limitation placed
on the inputs by the power supply voltages of the AD9240. The
power supplies bound the valid operating range for VINA and
VINB. The condition,
AVSS – 0.3 V < VINA < AVDD + 0.3 V
(3)
AVSS – 0.3 V < VINB < AVDD + 0.3 V
where AVSS is nominally 0 V and AVDD is nominally +5 V,
defines this requirement. Thus, the range of valid inputs for
VINA and VINB is any combination that satisfies both Equa-
tions 2 and 3.
For additional information showing the relationship between
VINA, VINB, VREF and the digital output of the AD9240, see
Table IV.
Refer to Table I and Table II for a summary of the various
analog input and reference configurations.
ANALOG INPUT OPERATION
Figure 24 shows the equivalent analog input of the AD9240
which consists of a differential sample-and-hold amplifier (SHA).
The differential input structure of the SHA is highly flexible,
allowing the devices to be easily configured for either a differen-
tial or single-ended input. The dc offset, or common-mode
voltage, of the input(s) can be set to accommodate either single-
supply or dual supply systems. Note also that the analog inputs,
VINA and VINB, are interchangeable with the exception that
reversing the inputs to the VINA and VINB pins results in a
polarity inversion.
VINA
VINB
CPIN+
CPAR
CPIN
CPAR
QS1
QS1
QH1
CS
CS
CH
CH
QS2
QS2
Figure 24. Simplified Input Circuit
The input SHA of the AD9240 is optimized to meet the perfor-
mance requirements for some of the most demanding commu-
nication, imaging, and data acquisition applications while
maintaining low power dissipation. Figure 25 is a graph of the
full-power bandwidth of the AD9240, typically 60 MHz. Note
that the small signal bandwidth is the same as the full-power
bandwidth. The settling time response to a full-scale stepped
input is shown in Figure 26 and is typically less than 40 ns to
0.0025%. The low input referred noise of 0.36 LSB’s rms is
displayed via a grounded histogram and is shown in Figure 13.
FREQUENCY – MHz
1
0
–7
1
10
100
–3
–4
–5
–6
–1
–2
–8
–9
–10
Figure 25. Full-Power Bandwidth
SETTLING TIME – ns
16000
12000
0
0
60
10
20
30
40
50
8000
4000
70
80
Figure 26. Settling Time
The SHA’s optimum distortion performance for a differential or
single-ended input is achieved under the following two condi-
tions: (1) the common-mode voltage is centered around mid-
supply (i.e., AVDD/2 or approximately 2.5 V) and (2) the input
signal voltage span of the SHA is set at its lowest (i.e., 2 V input
span). This is due to the sampling switches, QS1, being CMOS
switches whose RON resistance is very low but has some signal
dependency which causes frequency dependent ac distortion
while the SHA is in the track mode. The RON resistance of a
CMOS switch is typically lowest at its midsupply but increases
symmetrically as the input signal approaches either AVDD or
AVSS. A lower input signal voltage span centered at midsupply
reduces the degree of RON modulation.
B


Similar Part No. - AD9240ASZRL

ManufacturerPart #DatasheetDescription
logo
Analog Devices
AD9240ASZRL AD-AD9240ASZRL Datasheet
369Kb / 25P
   Monolithic A/D Converter
More results

Similar Description - AD9240ASZRL

ManufacturerPart #DatasheetDescription
logo
Analog Devices
AD9240 AD-AD9240 Datasheet
328Kb / 24P
   Complete 14-Bit, 10 MSPS Monolithic A/D Converter
REV. A
AD9240ASZ AD-AD9240ASZ Datasheet
327Kb / 24P
   Complete 14-Bit, 10 MSPS Monolithic A/D Converter
REV. B
AD9241 AD-AD9241 Datasheet
495Kb / 24P
   Complete 14-Bit, 1.25 MSPS Monolithic A/D Converter
REV. 0
AD9243 AD-AD9243_15 Datasheet
403Kb / 24P
   Complete 14-Bit, 3.0 MSPS Monolithic A/D Converter
REV. A
AD9243ASZ AD-AD9243ASZ Datasheet
403Kb / 24P
   Complete 14-Bit, 3.0 MSPS Monolithic A/D Converter
REV. A
AD9243 AD-AD9243 Datasheet
545Kb / 24P
   Complete 14-Bit, 3.0 MSPS Monolithic A/D Converter
REV. A
AD9243ASRL AD-AD9243ASRL Datasheet
403Kb / 24P
   Complete 14-Bit, 3.0 MSPS Monolithic A/D Converter
REV. A
AD9241 AD-AD9241_17 Datasheet
530Kb / 25P
   Complete 14-Bit, 1.25 MSPS Monolithic A/D Converter
AD9241ASZ AD-AD9241ASZ Datasheet
497Kb / 24P
   Complete 14-Bit, 1.25 MSPS Monolithic A/D Converter
REV. 0
AD9241 AD-AD9241_15 Datasheet
497Kb / 24P
   Complete 14-Bit, 1.25 MSPS Monolithic A/D Converter
REV. 0
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.NET
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com