Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.NET

X  

EL7156CSZ-T7 Datasheet(PDF) 8 Page - Intersil Corporation

Part # EL7156CSZ-T7
Description  High Performance Pin Driver
Download  11 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  INTERSIL [Intersil Corporation]
Direct Link  http://www.intersil.com/cda/home
Logo INTERSIL - Intersil Corporation

EL7156CSZ-T7 Datasheet(HTML) 8 Page - Intersil Corporation

Back Button EL7156CSZ-T7 Datasheet HTML 3Page - Intersil Corporation EL7156CSZ-T7 Datasheet HTML 4Page - Intersil Corporation EL7156CSZ-T7 Datasheet HTML 5Page - Intersil Corporation EL7156CSZ-T7 Datasheet HTML 6Page - Intersil Corporation EL7156CSZ-T7 Datasheet HTML 7Page - Intersil Corporation EL7156CSZ-T7 Datasheet HTML 8Page - Intersil Corporation EL7156CSZ-T7 Datasheet HTML 9Page - Intersil Corporation EL7156CSZ-T7 Datasheet HTML 10Page - Intersil Corporation EL7156CSZ-T7 Datasheet HTML 11Page - Intersil Corporation  
Zoom Inzoom in Zoom Outzoom out
 8 / 11 page
background image
8
FN7280.4
September 1, 2015
Applications Information
Product Description
The EL7156 is a high performance 40MHz pin driver. It
contains two analog switches connecting VH and VL to OUT.
Depending on the value of the IN pin, one of the two
switches will be closed and the other switch open. An output
enable (OE) is also supplied which opens both switches
simultaneously.
Due to the topology of the EL7156, both the VH and VL pins
can be connected to any voltage between the VS+ and VS-
pins, but VH must be greater than VL in order to prevent
turning on the body diode at the output stage.
The EL7156 is available in both the 8 Ld SOIC and the 8 Ld
PDIP packages. The relevant package should be chosen
depending on the calculated power dissipation.
Three-state Operation
When the OE pin is low, the output is three-state (floating).
The output voltage is the parasitic capacitance’s voltage. It
can be any voltage between VH and VL, depending on the
previous state. At three-state, the output voltage can be
pushed to any voltage between VH and VL. The output
voltage can’t be pushed higher than VH or lower than VL
since the body diode at the output stage will turn on.
Supply Voltage Range and Input Compatibility
The EL7156 is designed for operation on supplies from 5V to
15V (4.5V to 16.5V maximum). “Operating Voltage Range”
on page 6 shows the specifications for the relationship
between the VS+, VS-, VH, VL, and GND pins.
All input pins are compatible with both 3V and 5V CMOS
signals. With a positive supply (VS+) of 5V, the EL7156 is
also compatible with TTL inputs.
Power Supply Bypassing
When using the EL7156, it is very important to use adequate
power supply bypassing. The high switching currents
developed by the EL7156 necessitate the use of a bypass
capacitor between the supplies (VS+ and VS-) and GND
pins. It is recommended that a 2.2µF tantalum capacitor be
used in parallel with a 0.1µF low-inductance ceramic MLC
capacitor. These should be placed as close to the supply
pins as possible. It is also recommended that the VH and VL
pins have some level of bypassing, especially if the EL7156
is driving highly capacitive loads.
Power Dissipation Calculation
When switching at high speeds, or driving heavy loads, the
EL7156 drive capability is limited by the rise in die
temperature brought about by internal power dissipation. For
reliable operation, die temperature must be kept below
TJMAX (+125°C). It is necessary to calculate the power
dissipation for a given application prior to selecting the
package type.
Power dissipation may be calculated:
where:
VS is the total power supply to the EL7156 (from VS+ to
GND)
VOUT is the swing on the output (VH to VL)
CVS is the integral capacitance due to VS+
CINT is the integral load capacitance due to VH
IS is the quiescent supply current (3mA max)
f is frequency
Having obtained the application’s power dissipation, a
maximum package thermal coefficient may be determined,
to maintain the internal die temperature below TJMAX:
where:
TJMAX is the maximum junction temperature (+125°C)
TMAX is the maximum operating temperature
PD is the power dissipation calculated above
θJA thermal resistance on junction to ambient
θJA is 160°C/W for the SOIC8 package and 100°C/W for the
PDIP8 package when using a standard JEDEC JESD51-3
single-layer test board. If TJMAX is greater than +125°C
when calculated using Equation 2, then one of the following
actions must be taken:
Reduce
θJA the system by designing more heat-sinking
into the PCB (as compared to the standard JEDEC
JESD51-3).
Use the PDIP8 instead of the SOIC8 package.
De-rate the application either by reducing the switching
frequency, the capacitive load, or the maximum operating
(ambient) temperature (TMAX).
TABLE 1. INTEGRAL CAPACITANCE
VS+ = VH(V)
CVS(pF)
CINT(pF)
5
80
120
10
85
145
15
90
180
PD
VS
(
IS) CVS
(
VS
2
f
)
CINT CL
+
() VOUT
2
f
×
×
[]
+
×
×
+
×
=
(EQ. 1)
θJA
TJMAX TMAX
PD
-----------------------------------------
=
(EQ. 2)
EL7156


Similar Part No. - EL7156CSZ-T7

ManufacturerPart #DatasheetDescription
logo
Intersil Corporation
EL7156CSZ-T7 INTERSIL-EL7156CSZ-T7 Datasheet
1Mb / 10P
   High Performance Pin Driver
EL7156CSZ-T7 INTERSIL-EL7156CSZ-T7 Datasheet
232Kb / 10P
   High Performance Pin Driver
EL7156CSZ-T7 INTERSIL-EL7156CSZ-T7 Datasheet
294Kb / 11P
   High Performance Pin Driver
September 1, 2015
logo
Renesas Technology Corp
EL7156CSZ-T7 RENESAS-EL7156CSZ-T7 Datasheet
555Kb / 11P
   High Performance Pin Driver
More results

Similar Description - EL7156CSZ-T7

ManufacturerPart #DatasheetDescription
logo
Intersil Corporation
EL7156 INTERSIL-EL7156 Datasheet
232Kb / 10P
   High Performance Pin Driver
logo
Renesas Technology Corp
EL7156 RENESAS-EL7156 Datasheet
555Kb / 11P
   High Performance Pin Driver
logo
Intersil Corporation
EL7156CNZ INTERSIL-EL7156CNZ Datasheet
294Kb / 11P
   High Performance Pin Driver
September 1, 2015
EL7155CSZ INTERSIL-EL7155CSZ Datasheet
367Kb / 10P
   High Performance Pin Driver
October 24, 2014
EL7156 INTERSIL-EL7156_05 Datasheet
1Mb / 10P
   High Performance Pin Driver
logo
Renesas Technology Corp
EL7155 RENESAS-EL7155 Datasheet
524Kb / 10P
   High Performance Pin Driver
logo
Intersil Corporation
EL7155 INTERSIL-EL7155_06 Datasheet
477Kb / 10P
   High Performance Pin Driver
logo
Zarlink Semiconductor I...
MF446 ZARLINK-MF446 Datasheet
402Kb / 4P
   High-Performance PIN
logo
Mitel Networks Corporat...
1A354 MITEL-1A354 Datasheet
46Kb / 2P
   High-Performance PIN
logo
Zarlink Semiconductor I...
MF432 ZARLINK-MF432 Datasheet
158Kb / 3P
   High Performance PIN
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.NET
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com